Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution

In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2015-10, Vol.141, p.104-117
Hauptverfasser: Matos, Larissa A., Bandyopadhyay, Dipankar, Castro, Luis M., Lachos, Victor H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue
container_start_page 104
container_title Journal of multivariate analysis
container_volume 141
creator Matos, Larissa A.
Bandyopadhyay, Dipankar
Castro, Luis M.
Lachos, Victor H.
description In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.
doi_str_mv 10.1016/j.jmva.2015.06.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4504025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X15001591</els_id><sourcerecordid>1826635176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTjv6Ai4kSzdVJqmkkgIRZPBnYMCFCu5COrnVk6aqMuamGt35Gr6eT2KaHgfdmM1d5Jxzfz5CnnLWcsb7F_t2Px9cKxhXLetbxuU9suFsUI0WsrtPNoxJ3Qg1fDkjjxD3jHGutHxIzkTPB2Y035Dd5TJOKyweqEMExBmWQuNCPSyYMgQ6x28QGhhH8AXpnAJMSFeMy46Wa6DzOpV4cDm6AvRjWUP1__rxE5tCQ8SS43YtMS2PyYPRTQhPbus5-fz2zaeL983Vh3eXF6-vGi85L42QfNhKtzXe6xCUkIZp04_1KdmZYDoRZCeD0nz00HGhvAANTpsxDKIzsjsnr065N-t2hlC3KNlN9ibH2eXvNrlo__1Z4rXdpYOVikkmVA14fhuQ09cVsNg5oodpcgukFS03ou87xXVfpeIk9TkhZhjv2nBmj4Ts3h4J2SMhy3pbCVXTs78HvLP8QVIFL0-Cemc4RMgWfTwCCjFXBDak-L_83zMhpqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826635176</pqid></control><display><type>article</type><title>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</title><source>Elsevier ScienceDirect Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Matos, Larissa A. ; Bandyopadhyay, Dipankar ; Castro, Luis M. ; Lachos, Victor H.</creator><creatorcontrib>Matos, Larissa A. ; Bandyopadhyay, Dipankar ; Castro, Luis M. ; Lachos, Victor H.</creatorcontrib><description>In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2015.06.014</identifier><identifier>PMID: 26190871</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Case-deletion diagnostics ; Censored data ; ECM algorithm ; Linear mixed-effects model ; Multivariate Student’s-[formula omitted] distribution ; Non-linear mixed-effects model</subject><ispartof>Journal of multivariate analysis, 2015-10, Vol.141, p.104-117</ispartof><rights>2015 Elsevier Inc.</rights><rights>2015 Published by Elsevier Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</citedby><cites>FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmva.2015.06.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26190871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><title>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</title><title>Journal of multivariate analysis</title><addtitle>J Multivar Anal</addtitle><description>In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.</description><subject>Case-deletion diagnostics</subject><subject>Censored data</subject><subject>ECM algorithm</subject><subject>Linear mixed-effects model</subject><subject>Multivariate Student’s-[formula omitted] distribution</subject><subject>Non-linear mixed-effects model</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFDEUhYMoTjv6Ai4kSzdVJqmkkgIRZPBnYMCFCu5COrnVk6aqMuamGt35Gr6eT2KaHgfdmM1d5Jxzfz5CnnLWcsb7F_t2Px9cKxhXLetbxuU9suFsUI0WsrtPNoxJ3Qg1fDkjjxD3jHGutHxIzkTPB2Y035Dd5TJOKyweqEMExBmWQuNCPSyYMgQ6x28QGhhH8AXpnAJMSFeMy46Wa6DzOpV4cDm6AvRjWUP1__rxE5tCQ8SS43YtMS2PyYPRTQhPbus5-fz2zaeL983Vh3eXF6-vGi85L42QfNhKtzXe6xCUkIZp04_1KdmZYDoRZCeD0nz00HGhvAANTpsxDKIzsjsnr065N-t2hlC3KNlN9ibH2eXvNrlo__1Z4rXdpYOVikkmVA14fhuQ09cVsNg5oodpcgukFS03ou87xXVfpeIk9TkhZhjv2nBmj4Ts3h4J2SMhy3pbCVXTs78HvLP8QVIFL0-Cemc4RMgWfTwCCjFXBDak-L_83zMhpqc</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Matos, Larissa A.</creator><creator>Bandyopadhyay, Dipankar</creator><creator>Castro, Luis M.</creator><creator>Lachos, Victor H.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201510</creationdate><title>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</title><author>Matos, Larissa A. ; Bandyopadhyay, Dipankar ; Castro, Luis M. ; Lachos, Victor H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Case-deletion diagnostics</topic><topic>Censored data</topic><topic>ECM algorithm</topic><topic>Linear mixed-effects model</topic><topic>Multivariate Student’s-[formula omitted] distribution</topic><topic>Non-linear mixed-effects model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matos, Larissa A.</au><au>Bandyopadhyay, Dipankar</au><au>Castro, Luis M.</au><au>Lachos, Victor H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</atitle><jtitle>Journal of multivariate analysis</jtitle><addtitle>J Multivar Anal</addtitle><date>2015-10</date><risdate>2015</risdate><volume>141</volume><spage>104</spage><epage>117</epage><pages>104-117</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><abstract>In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26190871</pmid><doi>10.1016/j.jmva.2015.06.014</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2015-10, Vol.141, p.104-117
issn 0047-259X
1095-7243
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4504025
source Elsevier ScienceDirect Journals; Free E-Journal (出版社公開部分のみ)
subjects Case-deletion diagnostics
Censored data
ECM algorithm
Linear mixed-effects model
Multivariate Student’s-[formula omitted] distribution
Non-linear mixed-effects model
title Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20assessment%20in%20censored%20mixed-effects%20models%20using%20the%20multivariate%20Student%E2%80%99s-t%20distribution&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Matos,%20Larissa%20A.&rft.date=2015-10&rft.volume=141&rft.spage=104&rft.epage=117&rft.pages=104-117&rft.issn=0047-259X&rft.eissn=1095-7243&rft_id=info:doi/10.1016/j.jmva.2015.06.014&rft_dat=%3Cproquest_pubme%3E1826635176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826635176&rft_id=info:pmid/26190871&rft_els_id=S0047259X15001591&rfr_iscdi=true