Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution
In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2015-10, Vol.141, p.104-117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | |
container_start_page | 104 |
container_title | Journal of multivariate analysis |
container_volume | 141 |
creator | Matos, Larissa A. Bandyopadhyay, Dipankar Castro, Luis M. Lachos, Victor H. |
description | In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes. |
doi_str_mv | 10.1016/j.jmva.2015.06.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4504025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X15001591</els_id><sourcerecordid>1826635176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTjv6Ai4kSzdVJqmkkgIRZPBnYMCFCu5COrnVk6aqMuamGt35Gr6eT2KaHgfdmM1d5Jxzfz5CnnLWcsb7F_t2Px9cKxhXLetbxuU9suFsUI0WsrtPNoxJ3Qg1fDkjjxD3jHGutHxIzkTPB2Y035Dd5TJOKyweqEMExBmWQuNCPSyYMgQ6x28QGhhH8AXpnAJMSFeMy46Wa6DzOpV4cDm6AvRjWUP1__rxE5tCQ8SS43YtMS2PyYPRTQhPbus5-fz2zaeL983Vh3eXF6-vGi85L42QfNhKtzXe6xCUkIZp04_1KdmZYDoRZCeD0nz00HGhvAANTpsxDKIzsjsnr065N-t2hlC3KNlN9ibH2eXvNrlo__1Z4rXdpYOVikkmVA14fhuQ09cVsNg5oodpcgukFS03ou87xXVfpeIk9TkhZhjv2nBmj4Ts3h4J2SMhy3pbCVXTs78HvLP8QVIFL0-Cemc4RMgWfTwCCjFXBDak-L_83zMhpqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826635176</pqid></control><display><type>article</type><title>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</title><source>Elsevier ScienceDirect Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Matos, Larissa A. ; Bandyopadhyay, Dipankar ; Castro, Luis M. ; Lachos, Victor H.</creator><creatorcontrib>Matos, Larissa A. ; Bandyopadhyay, Dipankar ; Castro, Luis M. ; Lachos, Victor H.</creatorcontrib><description>In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2015.06.014</identifier><identifier>PMID: 26190871</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Case-deletion diagnostics ; Censored data ; ECM algorithm ; Linear mixed-effects model ; Multivariate Student’s-[formula omitted] distribution ; Non-linear mixed-effects model</subject><ispartof>Journal of multivariate analysis, 2015-10, Vol.141, p.104-117</ispartof><rights>2015 Elsevier Inc.</rights><rights>2015 Published by Elsevier Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</citedby><cites>FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmva.2015.06.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26190871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><title>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</title><title>Journal of multivariate analysis</title><addtitle>J Multivar Anal</addtitle><description>In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.</description><subject>Case-deletion diagnostics</subject><subject>Censored data</subject><subject>ECM algorithm</subject><subject>Linear mixed-effects model</subject><subject>Multivariate Student’s-[formula omitted] distribution</subject><subject>Non-linear mixed-effects model</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFDEUhYMoTjv6Ai4kSzdVJqmkkgIRZPBnYMCFCu5COrnVk6aqMuamGt35Gr6eT2KaHgfdmM1d5Jxzfz5CnnLWcsb7F_t2Px9cKxhXLetbxuU9suFsUI0WsrtPNoxJ3Qg1fDkjjxD3jHGutHxIzkTPB2Y035Dd5TJOKyweqEMExBmWQuNCPSyYMgQ6x28QGhhH8AXpnAJMSFeMy46Wa6DzOpV4cDm6AvRjWUP1__rxE5tCQ8SS43YtMS2PyYPRTQhPbus5-fz2zaeL983Vh3eXF6-vGi85L42QfNhKtzXe6xCUkIZp04_1KdmZYDoRZCeD0nz00HGhvAANTpsxDKIzsjsnr065N-t2hlC3KNlN9ibH2eXvNrlo__1Z4rXdpYOVikkmVA14fhuQ09cVsNg5oodpcgukFS03ou87xXVfpeIk9TkhZhjv2nBmj4Ts3h4J2SMhy3pbCVXTs78HvLP8QVIFL0-Cemc4RMgWfTwCCjFXBDak-L_83zMhpqc</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Matos, Larissa A.</creator><creator>Bandyopadhyay, Dipankar</creator><creator>Castro, Luis M.</creator><creator>Lachos, Victor H.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201510</creationdate><title>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</title><author>Matos, Larissa A. ; Bandyopadhyay, Dipankar ; Castro, Luis M. ; Lachos, Victor H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-2419b4ab8cc7dd52480786ffff5438d832d434d571fce3125c2e7ea78fd923843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Case-deletion diagnostics</topic><topic>Censored data</topic><topic>ECM algorithm</topic><topic>Linear mixed-effects model</topic><topic>Multivariate Student’s-[formula omitted] distribution</topic><topic>Non-linear mixed-effects model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matos, Larissa A.</au><au>Bandyopadhyay, Dipankar</au><au>Castro, Luis M.</au><au>Lachos, Victor H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution</atitle><jtitle>Journal of multivariate analysis</jtitle><addtitle>J Multivar Anal</addtitle><date>2015-10</date><risdate>2015</risdate><volume>141</volume><spage>104</spage><epage>117</epage><pages>104-117</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><abstract>In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyze these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26190871</pmid><doi>10.1016/j.jmva.2015.06.014</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2015-10, Vol.141, p.104-117 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4504025 |
source | Elsevier ScienceDirect Journals; Free E-Journal (出版社公開部分のみ) |
subjects | Case-deletion diagnostics Censored data ECM algorithm Linear mixed-effects model Multivariate Student’s-[formula omitted] distribution Non-linear mixed-effects model |
title | Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20assessment%20in%20censored%20mixed-effects%20models%20using%20the%20multivariate%20Student%E2%80%99s-t%20distribution&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Matos,%20Larissa%20A.&rft.date=2015-10&rft.volume=141&rft.spage=104&rft.epage=117&rft.pages=104-117&rft.issn=0047-259X&rft.eissn=1095-7243&rft_id=info:doi/10.1016/j.jmva.2015.06.014&rft_dat=%3Cproquest_pubme%3E1826635176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826635176&rft_id=info:pmid/26190871&rft_els_id=S0047259X15001591&rfr_iscdi=true |