Molecular heterogeneity of RET loss of function in Hirschsprung's disease
The RET proto‐oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non‐neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrin...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 1996-06, Vol.15 (11), p.2717-2725 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2725 |
---|---|
container_issue | 11 |
container_start_page | 2717 |
container_title | The EMBO journal |
container_volume | 15 |
creator | Carlomagno, F. De Vita, G. Berlingieri, M. T. Franciscis, V. Melillo, R. M. Colantuoni, V. Kraus, M. H. Di Fiore, P. P. Fusco, A. Santoro, M. |
description | The RET proto‐oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non‐neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non‐neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild‐type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972–>Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32–>Leu) and HSCR393 (Phe393–>Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface. |
doi_str_mv | 10.1002/j.1460-2075.1996.tb00632.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_450207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78098440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5772-7dd58cd823e66ab020385942930dfab5e580497298cad97f5d3fc10c770258233</originalsourceid><addsrcrecordid>eNqVkU1v1DAQhi0EKtvCT0CKOMApYezEX0gcSrX0Q62QUDlbXmey61U2XuwEuv--CbtalRPqwfJI7_uOPfMQ8p5CQQHYp3VBKwE5A8kLqrUo-gWAKFnx8ILMjtJLMgMmaF5RpV-T05TWAMCVpCfkRAlelULPyPVdaNENrY3ZCnuMYYkd-n6XhSb7Mb_P2pDSVDdD53ofusx32ZWPya3SNg7d8mPKap_QJnxDXjW2Tfj2cJ-Rn9_m9xdX-e33y-uL89vccSlZLuuaK1crVqIQdgEMSsV1xXQJdWMXHLmCSkumlbO1lg2vy8ZRcFIC42OqPCNf9n23w2KDtcOuj7Y12-g3Nu5MsN78q3R-ZZbht6n4-Jgc8x8O-Rh-DZh6s_HJYdvaDsOQjFSgVVXBf42UCxgPG42f90YXx21FbI6foWAmYGZtJipmomImYOYAzDyM4XdPxzlGD4RG_Xyv__Et7p7R2czvvt78rctHbjqm3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15601562</pqid></control><display><type>article</type><title>Molecular heterogeneity of RET loss of function in Hirschsprung's disease</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Carlomagno, F. ; De Vita, G. ; Berlingieri, M. T. ; Franciscis, V. ; Melillo, R. M. ; Colantuoni, V. ; Kraus, M. H. ; Di Fiore, P. P. ; Fusco, A. ; Santoro, M.</creator><creatorcontrib>Carlomagno, F. ; De Vita, G. ; Berlingieri, M. T. ; Franciscis, V. ; Melillo, R. M. ; Colantuoni, V. ; Kraus, M. H. ; Di Fiore, P. P. ; Fusco, A. ; Santoro, M.</creatorcontrib><description>The RET proto‐oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non‐neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non‐neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild‐type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972–>Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32–>Leu) and HSCR393 (Phe393–>Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1002/j.1460-2075.1996.tb00632.x</identifier><identifier>PMID: 8654369</identifier><language>eng</language><publisher>England</publisher><subject>3T3 Cells ; Animals ; Base Sequence ; DNA Primers - chemistry ; DNA-Binding Proteins - genetics ; Drosophila Proteins ; Early Growth Response Protein 1 ; Gene Expression Regulation, Neoplastic ; Hirschsprung Disease - genetics ; Humans ; Immediate-Early Proteins ; Mice ; Molecular Sequence Data ; Neuropeptides ; PC12 Cells ; Point Mutation ; Proteins - genetics ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins c-ret ; Rats ; Receptor Protein-Tyrosine Kinases - genetics ; RNA, Messenger - genetics ; Structure-Activity Relationship ; Transcription Factors - genetics</subject><ispartof>The EMBO journal, 1996-06, Vol.15 (11), p.2717-2725</ispartof><rights>1996 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5772-7dd58cd823e66ab020385942930dfab5e580497298cad97f5d3fc10c770258233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC450207/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC450207/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8654369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlomagno, F.</creatorcontrib><creatorcontrib>De Vita, G.</creatorcontrib><creatorcontrib>Berlingieri, M. T.</creatorcontrib><creatorcontrib>Franciscis, V.</creatorcontrib><creatorcontrib>Melillo, R. M.</creatorcontrib><creatorcontrib>Colantuoni, V.</creatorcontrib><creatorcontrib>Kraus, M. H.</creatorcontrib><creatorcontrib>Di Fiore, P. P.</creatorcontrib><creatorcontrib>Fusco, A.</creatorcontrib><creatorcontrib>Santoro, M.</creatorcontrib><title>Molecular heterogeneity of RET loss of function in Hirschsprung's disease</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>The RET proto‐oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non‐neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non‐neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild‐type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972–>Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32–>Leu) and HSCR393 (Phe393–>Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>DNA Primers - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Drosophila Proteins</subject><subject>Early Growth Response Protein 1</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hirschsprung Disease - genetics</subject><subject>Humans</subject><subject>Immediate-Early Proteins</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Neuropeptides</subject><subject>PC12 Cells</subject><subject>Point Mutation</subject><subject>Proteins - genetics</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins c-ret</subject><subject>Rats</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Structure-Activity Relationship</subject><subject>Transcription Factors - genetics</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkU1v1DAQhi0EKtvCT0CKOMApYezEX0gcSrX0Q62QUDlbXmey61U2XuwEuv--CbtalRPqwfJI7_uOPfMQ8p5CQQHYp3VBKwE5A8kLqrUo-gWAKFnx8ILMjtJLMgMmaF5RpV-T05TWAMCVpCfkRAlelULPyPVdaNENrY3ZCnuMYYkd-n6XhSb7Mb_P2pDSVDdD53ofusx32ZWPya3SNg7d8mPKap_QJnxDXjW2Tfj2cJ-Rn9_m9xdX-e33y-uL89vccSlZLuuaK1crVqIQdgEMSsV1xXQJdWMXHLmCSkumlbO1lg2vy8ZRcFIC42OqPCNf9n23w2KDtcOuj7Y12-g3Nu5MsN78q3R-ZZbht6n4-Jgc8x8O-Rh-DZh6s_HJYdvaDsOQjFSgVVXBf42UCxgPG42f90YXx21FbI6foWAmYGZtJipmomImYOYAzDyM4XdPxzlGD4RG_Xyv__Et7p7R2czvvt78rctHbjqm3A</recordid><startdate>19960603</startdate><enddate>19960603</enddate><creator>Carlomagno, F.</creator><creator>De Vita, G.</creator><creator>Berlingieri, M. T.</creator><creator>Franciscis, V.</creator><creator>Melillo, R. M.</creator><creator>Colantuoni, V.</creator><creator>Kraus, M. H.</creator><creator>Di Fiore, P. P.</creator><creator>Fusco, A.</creator><creator>Santoro, M.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960603</creationdate><title>Molecular heterogeneity of RET loss of function in Hirschsprung's disease</title><author>Carlomagno, F. ; De Vita, G. ; Berlingieri, M. T. ; Franciscis, V. ; Melillo, R. M. ; Colantuoni, V. ; Kraus, M. H. ; Di Fiore, P. P. ; Fusco, A. ; Santoro, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5772-7dd58cd823e66ab020385942930dfab5e580497298cad97f5d3fc10c770258233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>DNA Primers - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Drosophila Proteins</topic><topic>Early Growth Response Protein 1</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hirschsprung Disease - genetics</topic><topic>Humans</topic><topic>Immediate-Early Proteins</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Neuropeptides</topic><topic>PC12 Cells</topic><topic>Point Mutation</topic><topic>Proteins - genetics</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins c-ret</topic><topic>Rats</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Structure-Activity Relationship</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlomagno, F.</creatorcontrib><creatorcontrib>De Vita, G.</creatorcontrib><creatorcontrib>Berlingieri, M. T.</creatorcontrib><creatorcontrib>Franciscis, V.</creatorcontrib><creatorcontrib>Melillo, R. M.</creatorcontrib><creatorcontrib>Colantuoni, V.</creatorcontrib><creatorcontrib>Kraus, M. H.</creatorcontrib><creatorcontrib>Di Fiore, P. P.</creatorcontrib><creatorcontrib>Fusco, A.</creatorcontrib><creatorcontrib>Santoro, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlomagno, F.</au><au>De Vita, G.</au><au>Berlingieri, M. T.</au><au>Franciscis, V.</au><au>Melillo, R. M.</au><au>Colantuoni, V.</au><au>Kraus, M. H.</au><au>Di Fiore, P. P.</au><au>Fusco, A.</au><au>Santoro, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular heterogeneity of RET loss of function in Hirschsprung's disease</atitle><jtitle>The EMBO journal</jtitle><addtitle>EMBO J</addtitle><date>1996-06-03</date><risdate>1996</risdate><volume>15</volume><issue>11</issue><spage>2717</spage><epage>2725</epage><pages>2717-2725</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>The RET proto‐oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non‐neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non‐neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild‐type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972–>Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32–>Leu) and HSCR393 (Phe393–>Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface.</abstract><cop>England</cop><pmid>8654369</pmid><doi>10.1002/j.1460-2075.1996.tb00632.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 1996-06, Vol.15 (11), p.2717-2725 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_450207 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 3T3 Cells Animals Base Sequence DNA Primers - chemistry DNA-Binding Proteins - genetics Drosophila Proteins Early Growth Response Protein 1 Gene Expression Regulation, Neoplastic Hirschsprung Disease - genetics Humans Immediate-Early Proteins Mice Molecular Sequence Data Neuropeptides PC12 Cells Point Mutation Proteins - genetics Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins c-ret Rats Receptor Protein-Tyrosine Kinases - genetics RNA, Messenger - genetics Structure-Activity Relationship Transcription Factors - genetics |
title | Molecular heterogeneity of RET loss of function in Hirschsprung's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20heterogeneity%20of%20RET%20loss%20of%20function%20in%20Hirschsprung's%20disease&rft.jtitle=The%20EMBO%20journal&rft.au=Carlomagno,%20F.&rft.date=1996-06-03&rft.volume=15&rft.issue=11&rft.spage=2717&rft.epage=2725&rft.pages=2717-2725&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.1002/j.1460-2075.1996.tb00632.x&rft_dat=%3Cproquest_pubme%3E78098440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15601562&rft_id=info:pmid/8654369&rfr_iscdi=true |