Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2
TiO 2 is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-07, Vol.5 (1), p.11482-11482, Article 11482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11482 |
---|---|
container_issue | 1 |
container_start_page | 11482 |
container_title | Scientific reports |
container_volume | 5 |
creator | Mi, Yang Weng, Yuxiang |
description | TiO
2
is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts. |
doi_str_mv | 10.1038/srep11482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1696681595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-3d7529637cfe24bc6f23cca31634fda0ffbc782b1ff890532c98aeabbc37a6693</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMobsxd-Aek4I0K1Xy0WXMjzDE_YDIY8zqkaVIzunQmreK_N3NzTM1NzuE8vHlPXgBOEbxGkGQ33qkVQkmGD0AXwySNMcH4cK_ugL73CxhOilmC2DHoYIooo4x1wexO2CIaVqa0S2WbaN2Natu4uqpEXqloXCkZOhs9m9KJxoQqV82HUjaatY0JxLeAFY3wKpqbKT4BR1pUXvW3dw-83I_no8d4Mn14Gg0nsUxh0sSkGAQ_lAykVjjJJdWYSCkIoiTRhYBa53KQ4RxpnTGYEixZJpTIc0kGglJGeuB2o7tq86UqZLDvRMVXziyF--S1MPz3xJpXXtbvPEkhZCwLAhdbAVe_tco3fGm8VGFxq-rW8_Uf0QylLA3o-R90UbfOhvU4yhhLKaEMBupyQ0lX-5CL3plBkK_D4ruwAnu2735H_kQTgKsN4MPIlsrtPflP7Qtmkp5-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899563690</pqid></control><display><type>article</type><title>Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mi, Yang ; Weng, Yuxiang</creator><creatorcontrib>Mi, Yang ; Weng, Yuxiang</creatorcontrib><description>TiO
2
is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep11482</identifier><identifier>PMID: 26169699</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/299/890 ; 639/638/439/890 ; 639/638/77/890 ; Chemical reactions ; Conduction ; Humanities and Social Sciences ; Migration ; multidisciplinary ; Particle size ; Photocatalysis ; Pollutants ; Scanning ; Science ; Splitting ; Titanium ; Titanium dioxide</subject><ispartof>Scientific reports, 2015-07, Vol.5 (1), p.11482-11482, Article 11482</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-3d7529637cfe24bc6f23cca31634fda0ffbc782b1ff890532c98aeabbc37a6693</citedby><cites>FETCH-LOGICAL-c504t-3d7529637cfe24bc6f23cca31634fda0ffbc782b1ff890532c98aeabbc37a6693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26169699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Yang</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><title>Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>TiO
2
is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts.</description><subject>140/125</subject><subject>639/301/299/890</subject><subject>639/638/439/890</subject><subject>639/638/77/890</subject><subject>Chemical reactions</subject><subject>Conduction</subject><subject>Humanities and Social Sciences</subject><subject>Migration</subject><subject>multidisciplinary</subject><subject>Particle size</subject><subject>Photocatalysis</subject><subject>Pollutants</subject><subject>Scanning</subject><subject>Science</subject><subject>Splitting</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1LwzAUhoMobsxd-Aek4I0K1Xy0WXMjzDE_YDIY8zqkaVIzunQmreK_N3NzTM1NzuE8vHlPXgBOEbxGkGQ33qkVQkmGD0AXwySNMcH4cK_ugL73CxhOilmC2DHoYIooo4x1wexO2CIaVqa0S2WbaN2Natu4uqpEXqloXCkZOhs9m9KJxoQqV82HUjaatY0JxLeAFY3wKpqbKT4BR1pUXvW3dw-83I_no8d4Mn14Gg0nsUxh0sSkGAQ_lAykVjjJJdWYSCkIoiTRhYBa53KQ4RxpnTGYEixZJpTIc0kGglJGeuB2o7tq86UqZLDvRMVXziyF--S1MPz3xJpXXtbvPEkhZCwLAhdbAVe_tco3fGm8VGFxq-rW8_Uf0QylLA3o-R90UbfOhvU4yhhLKaEMBupyQ0lX-5CL3plBkK_D4ruwAnu2735H_kQTgKsN4MPIlsrtPflP7Qtmkp5-</recordid><startdate>20150714</startdate><enddate>20150714</enddate><creator>Mi, Yang</creator><creator>Weng, Yuxiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150714</creationdate><title>Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2</title><author>Mi, Yang ; Weng, Yuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-3d7529637cfe24bc6f23cca31634fda0ffbc782b1ff890532c98aeabbc37a6693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/125</topic><topic>639/301/299/890</topic><topic>639/638/439/890</topic><topic>639/638/77/890</topic><topic>Chemical reactions</topic><topic>Conduction</topic><topic>Humanities and Social Sciences</topic><topic>Migration</topic><topic>multidisciplinary</topic><topic>Particle size</topic><topic>Photocatalysis</topic><topic>Pollutants</topic><topic>Scanning</topic><topic>Science</topic><topic>Splitting</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Yang</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Yang</au><au>Weng, Yuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-07-14</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>11482</spage><epage>11482</epage><pages>11482-11482</pages><artnum>11482</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>TiO
2
is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26169699</pmid><doi>10.1038/srep11482</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-07, Vol.5 (1), p.11482-11482, Article 11482 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500998 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 140/125 639/301/299/890 639/638/439/890 639/638/77/890 Chemical reactions Conduction Humanities and Social Sciences Migration multidisciplinary Particle size Photocatalysis Pollutants Scanning Science Splitting Titanium Titanium dioxide |
title | Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20Alignment%20and%20Controllable%20Electron%20Migration%20between%20Rutile%20and%20Anatase%20TiO2&rft.jtitle=Scientific%20reports&rft.au=Mi,%20Yang&rft.date=2015-07-14&rft.volume=5&rft.issue=1&rft.spage=11482&rft.epage=11482&rft.pages=11482-11482&rft.artnum=11482&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep11482&rft_dat=%3Cproquest_pubme%3E1696681595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899563690&rft_id=info:pmid/26169699&rfr_iscdi=true |