Trace fluorescent labeling for protein crystallization
Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace‐labeling approach, the protein is covalently derivatized with a high‐quantum‐yield visible‐wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which h...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section F, Structural biology communications Structural biology communications, 2015-07, Vol.71 (7), p.806-814 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 814 |
---|---|
container_issue | 7 |
container_start_page | 806 |
container_title | Acta crystallographica. Section F, Structural biology communications |
container_volume | 71 |
creator | Pusey, Marc Barcena, Jorge Morris, Michelle Singhal, Anuj Yuan, Qunying Ng, Joseph |
description | Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace‐labeling approach, the protein is covalently derivatized with a high‐quantum‐yield visible‐wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate‐screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds `hidden' leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single‐pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV‐transparent. |
doi_str_mv | 10.1107/S2053230X15008626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4498700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3742475151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5435-c3bce10f484ea74b0298446ff36d7a0e4e32fddffb1c7e29f6fc120ba5df46ef3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEolXpB-CCInHhkuL_Ti5I1dIuFS0gbRFwshxn3Lp448VOgOXT4yjtUsSBk63x7z2_mSmKpxgdYYzkyxVBnBKKPmOOUC2IeFDsT6Vqqj28d98rDlO6QQhNMiybx8UeEZgxQth-IS6jNlBaP4YIyUA_lF634F1_VdoQy00MA7i-NHGbBu29-6UHF_onxSOrfYLD2_Og-Hh6crl4U52_X54tjs8rwxnllaGtAYwsqxloyVpEmpoxYS0VndQIGFBiu87aFhsJpLHCGkxQq3lnmQBLD4pXs-9mbNfQTfmi9moT3VrHrQraqb9fenetrsJ3xVhTS4SywfPZIKTBqWTcAObahL4HMyhCaN2geqJe3H4Tw7cR0qDWLg_De91DGJPCouFY1rwRfwx36E0YY5-HMFEidyiFzBSeKRNDShHsLjJGatqD-md9WfPsfq87xd2yMtDMwA_nYft_R3X85ZScLThqeNZWs9alAX7utDp-VTmu5OrTu6VidHXx4fXbpVrR3wZntRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696029767</pqid></control><display><type>article</type><title>Trace fluorescent labeling for protein crystallization</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pusey, Marc ; Barcena, Jorge ; Morris, Michelle ; Singhal, Anuj ; Yuan, Qunying ; Ng, Joseph</creator><creatorcontrib>Pusey, Marc ; Barcena, Jorge ; Morris, Michelle ; Singhal, Anuj ; Yuan, Qunying ; Ng, Joseph</creatorcontrib><description>Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace‐labeling approach, the protein is covalently derivatized with a high‐quantum‐yield visible‐wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate‐screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds `hidden' leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single‐pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV‐transparent.</description><identifier>ISSN: 2053-230X</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S2053230X15008626</identifier><identifier>PMID: 26144224</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>BYPASSES ; COLOR ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTALLIZATION ; Crystallization - methods ; CRYSTALS ; DIFFRACTION ; FLUORESCENCE ; Fluorescent Dyes - analysis ; ILLUMINANCE ; intensity ; Labeling ; Microscopy, Fluorescence - methods ; MOLECULES ; NUCLEATION ; OPTIMIZATION ; Plant Proteins - analysis ; Plant Proteins - chemistry ; PLATES ; PROBES ; Proteins ; Proteins - analysis ; Proteins - chemistry ; SCREENING ; Staining and Labeling - methods ; trace fluorescence labeling ; WAVELENGTHS</subject><ispartof>Acta crystallographica. Section F, Structural biology communications, 2015-07, Vol.71 (7), p.806-814</ispartof><rights>Pusey et al. 2015</rights><rights>Pusey et al. 2015</rights><rights>Pusey et al. 2015 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5435-c3bce10f484ea74b0298446ff36d7a0e4e32fddffb1c7e29f6fc120ba5df46ef3</citedby><cites>FETCH-LOGICAL-c5435-c3bce10f484ea74b0298446ff36d7a0e4e32fddffb1c7e29f6fc120ba5df46ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26144224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22389080$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pusey, Marc</creatorcontrib><creatorcontrib>Barcena, Jorge</creatorcontrib><creatorcontrib>Morris, Michelle</creatorcontrib><creatorcontrib>Singhal, Anuj</creatorcontrib><creatorcontrib>Yuan, Qunying</creatorcontrib><creatorcontrib>Ng, Joseph</creatorcontrib><title>Trace fluorescent labeling for protein crystallization</title><title>Acta crystallographica. Section F, Structural biology communications</title><addtitle>Acta Crystallographica Section F</addtitle><description>Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace‐labeling approach, the protein is covalently derivatized with a high‐quantum‐yield visible‐wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate‐screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds `hidden' leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single‐pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV‐transparent.</description><subject>BYPASSES</subject><subject>COLOR</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTALLIZATION</subject><subject>Crystallization - methods</subject><subject>CRYSTALS</subject><subject>DIFFRACTION</subject><subject>FLUORESCENCE</subject><subject>Fluorescent Dyes - analysis</subject><subject>ILLUMINANCE</subject><subject>intensity</subject><subject>Labeling</subject><subject>Microscopy, Fluorescence - methods</subject><subject>MOLECULES</subject><subject>NUCLEATION</subject><subject>OPTIMIZATION</subject><subject>Plant Proteins - analysis</subject><subject>Plant Proteins - chemistry</subject><subject>PLATES</subject><subject>PROBES</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Proteins - chemistry</subject><subject>SCREENING</subject><subject>Staining and Labeling - methods</subject><subject>trace fluorescence labeling</subject><subject>WAVELENGTHS</subject><issn>2053-230X</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEolXpB-CCInHhkuL_Ti5I1dIuFS0gbRFwshxn3Lp448VOgOXT4yjtUsSBk63x7z2_mSmKpxgdYYzkyxVBnBKKPmOOUC2IeFDsT6Vqqj28d98rDlO6QQhNMiybx8UeEZgxQth-IS6jNlBaP4YIyUA_lF634F1_VdoQy00MA7i-NHGbBu29-6UHF_onxSOrfYLD2_Og-Hh6crl4U52_X54tjs8rwxnllaGtAYwsqxloyVpEmpoxYS0VndQIGFBiu87aFhsJpLHCGkxQq3lnmQBLD4pXs-9mbNfQTfmi9moT3VrHrQraqb9fenetrsJ3xVhTS4SywfPZIKTBqWTcAObahL4HMyhCaN2geqJe3H4Tw7cR0qDWLg_De91DGJPCouFY1rwRfwx36E0YY5-HMFEidyiFzBSeKRNDShHsLjJGatqD-md9WfPsfq87xd2yMtDMwA_nYft_R3X85ZScLThqeNZWs9alAX7utDp-VTmu5OrTu6VidHXx4fXbpVrR3wZntRY</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Pusey, Marc</creator><creator>Barcena, Jorge</creator><creator>Morris, Michelle</creator><creator>Singhal, Anuj</creator><creator>Yuan, Qunying</creator><creator>Ng, Joseph</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201507</creationdate><title>Trace fluorescent labeling for protein crystallization</title><author>Pusey, Marc ; Barcena, Jorge ; Morris, Michelle ; Singhal, Anuj ; Yuan, Qunying ; Ng, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5435-c3bce10f484ea74b0298446ff36d7a0e4e32fddffb1c7e29f6fc120ba5df46ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>BYPASSES</topic><topic>COLOR</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTALLIZATION</topic><topic>Crystallization - methods</topic><topic>CRYSTALS</topic><topic>DIFFRACTION</topic><topic>FLUORESCENCE</topic><topic>Fluorescent Dyes - analysis</topic><topic>ILLUMINANCE</topic><topic>intensity</topic><topic>Labeling</topic><topic>Microscopy, Fluorescence - methods</topic><topic>MOLECULES</topic><topic>NUCLEATION</topic><topic>OPTIMIZATION</topic><topic>Plant Proteins - analysis</topic><topic>Plant Proteins - chemistry</topic><topic>PLATES</topic><topic>PROBES</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Proteins - chemistry</topic><topic>SCREENING</topic><topic>Staining and Labeling - methods</topic><topic>trace fluorescence labeling</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pusey, Marc</creatorcontrib><creatorcontrib>Barcena, Jorge</creatorcontrib><creatorcontrib>Morris, Michelle</creatorcontrib><creatorcontrib>Singhal, Anuj</creatorcontrib><creatorcontrib>Yuan, Qunying</creatorcontrib><creatorcontrib>Ng, Joseph</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pusey, Marc</au><au>Barcena, Jorge</au><au>Morris, Michelle</au><au>Singhal, Anuj</au><au>Yuan, Qunying</au><au>Ng, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace fluorescent labeling for protein crystallization</atitle><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle><addtitle>Acta Crystallographica Section F</addtitle><date>2015-07</date><risdate>2015</risdate><volume>71</volume><issue>7</issue><spage>806</spage><epage>814</epage><pages>806-814</pages><issn>2053-230X</issn><eissn>2053-230X</eissn><abstract>Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace‐labeling approach, the protein is covalently derivatized with a high‐quantum‐yield visible‐wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate‐screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds `hidden' leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single‐pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV‐transparent.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>26144224</pmid><doi>10.1107/S2053230X15008626</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-230X |
ispartof | Acta crystallographica. Section F, Structural biology communications, 2015-07, Vol.71 (7), p.806-814 |
issn | 2053-230X 2053-230X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4498700 |
source | MEDLINE; Access via Wiley Online Library; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | BYPASSES COLOR CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRYSTALLIZATION Crystallization - methods CRYSTALS DIFFRACTION FLUORESCENCE Fluorescent Dyes - analysis ILLUMINANCE intensity Labeling Microscopy, Fluorescence - methods MOLECULES NUCLEATION OPTIMIZATION Plant Proteins - analysis Plant Proteins - chemistry PLATES PROBES Proteins Proteins - analysis Proteins - chemistry SCREENING Staining and Labeling - methods trace fluorescence labeling WAVELENGTHS |
title | Trace fluorescent labeling for protein crystallization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace%20fluorescent%20labeling%20for%20protein%20crystallization&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20communications&rft.au=Pusey,%20Marc&rft.date=2015-07&rft.volume=71&rft.issue=7&rft.spage=806&rft.epage=814&rft.pages=806-814&rft.issn=2053-230X&rft.eissn=2053-230X&rft_id=info:doi/10.1107/S2053230X15008626&rft_dat=%3Cproquest_pubme%3E3742475151%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696029767&rft_id=info:pmid/26144224&rfr_iscdi=true |