In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model

ABSTRACT Bone metastasis, the leading cause of breast cancer‐related deaths, is characterized by bone degradation due to increased osteoclastic activity. In contrast, mechanical stimulation in healthy individuals upregulates osteoblastic activity, leading to new bone formation. However, the effect o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral research 2013-11, Vol.28 (11), p.2357-2367
Hauptverfasser: Lynch, Maureen E, Brooks, Daniel, Mohanan, Sunish, Lee, Min Joon, Polamraju, Praveen, Dent, Kelsey, Bonassar, Lawrence J, van der Meulen, Marjolein C H, Fischbach, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2367
container_issue 11
container_start_page 2357
container_title Journal of bone and mineral research
container_volume 28
creator Lynch, Maureen E
Brooks, Daniel
Mohanan, Sunish
Lee, Min Joon
Polamraju, Praveen
Dent, Kelsey
Bonassar, Lawrence J
van der Meulen, Marjolein C H
Fischbach, Claudia
description ABSTRACT Bone metastasis, the leading cause of breast cancer‐related deaths, is characterized by bone degradation due to increased osteoclastic activity. In contrast, mechanical stimulation in healthy individuals upregulates osteoblastic activity, leading to new bone formation. However, the effect of mechanical loading on the development and progression of metastatic breast cancer in bone remains unclear. Here, we developed a new in vivo model to investigate the role of skeletal mechanical stimuli on the development and osteolytic capability of secondary breast tumors. Specifically, we applied compressive loading to the tibia following intratibial injection of metastatic breast cancer cells (MDA‐MB231) into the proximal compartment of female immunocompromised (SCID) mice. In the absence of loading, tibiae developed histologically‐detectable tumors with associated osteolysis and excessive degradation of the proximal bone tissue. In contrast, mechanical loading dramatically reduced osteolysis and tumor formation and increased tibial cancellous mass due to trabecular thickening. These loading effects were similar to the baseline response we observed in non‐injected SCID mice. In vitro mechanical loading of MDA‐MB231 in a pathologically relevant 3D culture model suggested that the observed effects were not due to loading‐induced tumor cell death, but rather mediated via decreased expression of genes interfering with bone homeostasis. Collectively, our results suggest that mechanical loading inhibits the growth and osteolytic capability of secondary breast tumors after their homing to the bone, which may inform future treatment of breast cancer patients with advanced disease. © 2013 American Society for Bone and Mineral Research
doi_str_mv 10.1002/jbmr.1966
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4498485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464506242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-3ad97aa932f6fd9f0bcfb2e2d4fc28c287c1ed4b2202622ac0c5af8b924830463</originalsourceid><addsrcrecordid>eNqN0V2LFSEcBnCJoj1tXfQFQuimLmbXt3HGm6CWXjY2gqhr-Y-jrYdRT-qcON--mc62VBAEgqA_H9QHoceUnFFC2Pl2CPmMKinvoA1tGW-E7OldtCF9LxoiOD1BD0rZEkJkK-V9dMK4FEqSdoPCZcR7v0-4-sHDhE0Ku2xL8Sni0ZpsodiCU6k2TYfiC4Y44jqHlLFLOUBdoY8Y8PUcIOJgK5S6LBs8rIcrNhCNzTik0U4P0T0HU7GPbuZT9OXN688X75qrj28vL15eNUZ0UjYcRtUBKM6cdKNyZDBuYJaNwhnWL6Mz1I5iYIwwyRgYYlpw_aCY6DkRkp-iF8fc3TwEOxoba4ZJ77IPkA86gdd_7kR_rb-mvRZC9aJvl4BnNwE5fZttqTr4Yuw0QbRpLpoKKVoimWD_QQVXSnUtXejTv-g2zTkuP7Eq1gneCbWo50dlciolW3d7b0r02rde-9Zr34t98vtDb-WvghdwfgTf_WQP_07S7199-PQz8gcU9bd2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442743749</pqid></control><display><type>article</type><title>In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lynch, Maureen E ; Brooks, Daniel ; Mohanan, Sunish ; Lee, Min Joon ; Polamraju, Praveen ; Dent, Kelsey ; Bonassar, Lawrence J ; van der Meulen, Marjolein C H ; Fischbach, Claudia</creator><creatorcontrib>Lynch, Maureen E ; Brooks, Daniel ; Mohanan, Sunish ; Lee, Min Joon ; Polamraju, Praveen ; Dent, Kelsey ; Bonassar, Lawrence J ; van der Meulen, Marjolein C H ; Fischbach, Claudia</creatorcontrib><description>ABSTRACT Bone metastasis, the leading cause of breast cancer‐related deaths, is characterized by bone degradation due to increased osteoclastic activity. In contrast, mechanical stimulation in healthy individuals upregulates osteoblastic activity, leading to new bone formation. However, the effect of mechanical loading on the development and progression of metastatic breast cancer in bone remains unclear. Here, we developed a new in vivo model to investigate the role of skeletal mechanical stimuli on the development and osteolytic capability of secondary breast tumors. Specifically, we applied compressive loading to the tibia following intratibial injection of metastatic breast cancer cells (MDA‐MB231) into the proximal compartment of female immunocompromised (SCID) mice. In the absence of loading, tibiae developed histologically‐detectable tumors with associated osteolysis and excessive degradation of the proximal bone tissue. In contrast, mechanical loading dramatically reduced osteolysis and tumor formation and increased tibial cancellous mass due to trabecular thickening. These loading effects were similar to the baseline response we observed in non‐injected SCID mice. In vitro mechanical loading of MDA‐MB231 in a pathologically relevant 3D culture model suggested that the observed effects were not due to loading‐induced tumor cell death, but rather mediated via decreased expression of genes interfering with bone homeostasis. Collectively, our results suggest that mechanical loading inhibits the growth and osteolytic capability of secondary breast tumors after their homing to the bone, which may inform future treatment of breast cancer patients with advanced disease. © 2013 American Society for Bone and Mineral Research</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.1966</identifier><identifier>PMID: 23649605</identifier><identifier>CODEN: JBMREJ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Bone Neoplasms - complications ; Bone Neoplasms - diagnostic imaging ; Bone Neoplasms - physiopathology ; Bone Neoplasms - secondary ; Bone Resorption - complications ; Bone Resorption - diagnostic imaging ; Bone Resorption - pathology ; Bone Resorption - physiopathology ; BREAST CANCER ; Breast Neoplasms - complications ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Breast Neoplasms - physiopathology ; Cell Line, Tumor ; Disease Models, Animal ; Female ; Humans ; MECHANICAL LOADING ; METASTASIS ; Mice ; Mice, SCID ; OSTEOLYSIS ; Osteolysis - complications ; Osteolysis - diagnostic imaging ; Osteolysis - pathology ; Osteolysis - physiopathology ; Tibia - pathology ; Tibia - physiopathology ; Tissue Scaffolds - chemistry ; Weight-Bearing ; X-Ray Microtomography</subject><ispartof>Journal of bone and mineral research, 2013-11, Vol.28 (11), p.2357-2367</ispartof><rights>2013 American Society for Bone and Mineral Research</rights><rights>2013 American Society for Bone and Mineral Research.</rights><rights>2013 American Society for Bone and Mineral Research 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-3ad97aa932f6fd9f0bcfb2e2d4fc28c287c1ed4b2202622ac0c5af8b924830463</citedby><cites>FETCH-LOGICAL-c4766-3ad97aa932f6fd9f0bcfb2e2d4fc28c287c1ed4b2202622ac0c5af8b924830463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.1966$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.1966$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23649605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Maureen E</creatorcontrib><creatorcontrib>Brooks, Daniel</creatorcontrib><creatorcontrib>Mohanan, Sunish</creatorcontrib><creatorcontrib>Lee, Min Joon</creatorcontrib><creatorcontrib>Polamraju, Praveen</creatorcontrib><creatorcontrib>Dent, Kelsey</creatorcontrib><creatorcontrib>Bonassar, Lawrence J</creatorcontrib><creatorcontrib>van der Meulen, Marjolein C H</creatorcontrib><creatorcontrib>Fischbach, Claudia</creatorcontrib><title>In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>ABSTRACT Bone metastasis, the leading cause of breast cancer‐related deaths, is characterized by bone degradation due to increased osteoclastic activity. In contrast, mechanical stimulation in healthy individuals upregulates osteoblastic activity, leading to new bone formation. However, the effect of mechanical loading on the development and progression of metastatic breast cancer in bone remains unclear. Here, we developed a new in vivo model to investigate the role of skeletal mechanical stimuli on the development and osteolytic capability of secondary breast tumors. Specifically, we applied compressive loading to the tibia following intratibial injection of metastatic breast cancer cells (MDA‐MB231) into the proximal compartment of female immunocompromised (SCID) mice. In the absence of loading, tibiae developed histologically‐detectable tumors with associated osteolysis and excessive degradation of the proximal bone tissue. In contrast, mechanical loading dramatically reduced osteolysis and tumor formation and increased tibial cancellous mass due to trabecular thickening. These loading effects were similar to the baseline response we observed in non‐injected SCID mice. In vitro mechanical loading of MDA‐MB231 in a pathologically relevant 3D culture model suggested that the observed effects were not due to loading‐induced tumor cell death, but rather mediated via decreased expression of genes interfering with bone homeostasis. Collectively, our results suggest that mechanical loading inhibits the growth and osteolytic capability of secondary breast tumors after their homing to the bone, which may inform future treatment of breast cancer patients with advanced disease. © 2013 American Society for Bone and Mineral Research</description><subject>Animals</subject><subject>Bone Neoplasms - complications</subject><subject>Bone Neoplasms - diagnostic imaging</subject><subject>Bone Neoplasms - physiopathology</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone Resorption - complications</subject><subject>Bone Resorption - diagnostic imaging</subject><subject>Bone Resorption - pathology</subject><subject>Bone Resorption - physiopathology</subject><subject>BREAST CANCER</subject><subject>Breast Neoplasms - complications</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Breast Neoplasms - physiopathology</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>MECHANICAL LOADING</subject><subject>METASTASIS</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>OSTEOLYSIS</subject><subject>Osteolysis - complications</subject><subject>Osteolysis - diagnostic imaging</subject><subject>Osteolysis - pathology</subject><subject>Osteolysis - physiopathology</subject><subject>Tibia - pathology</subject><subject>Tibia - physiopathology</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Weight-Bearing</subject><subject>X-Ray Microtomography</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V2LFSEcBnCJoj1tXfQFQuimLmbXt3HGm6CWXjY2gqhr-Y-jrYdRT-qcON--mc62VBAEgqA_H9QHoceUnFFC2Pl2CPmMKinvoA1tGW-E7OldtCF9LxoiOD1BD0rZEkJkK-V9dMK4FEqSdoPCZcR7v0-4-sHDhE0Ku2xL8Sni0ZpsodiCU6k2TYfiC4Y44jqHlLFLOUBdoY8Y8PUcIOJgK5S6LBs8rIcrNhCNzTik0U4P0T0HU7GPbuZT9OXN688X75qrj28vL15eNUZ0UjYcRtUBKM6cdKNyZDBuYJaNwhnWL6Mz1I5iYIwwyRgYYlpw_aCY6DkRkp-iF8fc3TwEOxoba4ZJ77IPkA86gdd_7kR_rb-mvRZC9aJvl4BnNwE5fZttqTr4Yuw0QbRpLpoKKVoimWD_QQVXSnUtXejTv-g2zTkuP7Eq1gneCbWo50dlciolW3d7b0r02rde-9Zr34t98vtDb-WvghdwfgTf_WQP_07S7199-PQz8gcU9bd2</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Lynch, Maureen E</creator><creator>Brooks, Daniel</creator><creator>Mohanan, Sunish</creator><creator>Lee, Min Joon</creator><creator>Polamraju, Praveen</creator><creator>Dent, Kelsey</creator><creator>Bonassar, Lawrence J</creator><creator>van der Meulen, Marjolein C H</creator><creator>Fischbach, Claudia</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201311</creationdate><title>In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model</title><author>Lynch, Maureen E ; Brooks, Daniel ; Mohanan, Sunish ; Lee, Min Joon ; Polamraju, Praveen ; Dent, Kelsey ; Bonassar, Lawrence J ; van der Meulen, Marjolein C H ; Fischbach, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-3ad97aa932f6fd9f0bcfb2e2d4fc28c287c1ed4b2202622ac0c5af8b924830463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bone Neoplasms - complications</topic><topic>Bone Neoplasms - diagnostic imaging</topic><topic>Bone Neoplasms - physiopathology</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone Resorption - complications</topic><topic>Bone Resorption - diagnostic imaging</topic><topic>Bone Resorption - pathology</topic><topic>Bone Resorption - physiopathology</topic><topic>BREAST CANCER</topic><topic>Breast Neoplasms - complications</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Breast Neoplasms - physiopathology</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>MECHANICAL LOADING</topic><topic>METASTASIS</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>OSTEOLYSIS</topic><topic>Osteolysis - complications</topic><topic>Osteolysis - diagnostic imaging</topic><topic>Osteolysis - pathology</topic><topic>Osteolysis - physiopathology</topic><topic>Tibia - pathology</topic><topic>Tibia - physiopathology</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Weight-Bearing</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Maureen E</creatorcontrib><creatorcontrib>Brooks, Daniel</creatorcontrib><creatorcontrib>Mohanan, Sunish</creatorcontrib><creatorcontrib>Lee, Min Joon</creatorcontrib><creatorcontrib>Polamraju, Praveen</creatorcontrib><creatorcontrib>Dent, Kelsey</creatorcontrib><creatorcontrib>Bonassar, Lawrence J</creatorcontrib><creatorcontrib>van der Meulen, Marjolein C H</creatorcontrib><creatorcontrib>Fischbach, Claudia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Maureen E</au><au>Brooks, Daniel</au><au>Mohanan, Sunish</au><au>Lee, Min Joon</au><au>Polamraju, Praveen</au><au>Dent, Kelsey</au><au>Bonassar, Lawrence J</au><au>van der Meulen, Marjolein C H</au><au>Fischbach, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2013-11</date><risdate>2013</risdate><volume>28</volume><issue>11</issue><spage>2357</spage><epage>2367</epage><pages>2357-2367</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><coden>JBMREJ</coden><abstract>ABSTRACT Bone metastasis, the leading cause of breast cancer‐related deaths, is characterized by bone degradation due to increased osteoclastic activity. In contrast, mechanical stimulation in healthy individuals upregulates osteoblastic activity, leading to new bone formation. However, the effect of mechanical loading on the development and progression of metastatic breast cancer in bone remains unclear. Here, we developed a new in vivo model to investigate the role of skeletal mechanical stimuli on the development and osteolytic capability of secondary breast tumors. Specifically, we applied compressive loading to the tibia following intratibial injection of metastatic breast cancer cells (MDA‐MB231) into the proximal compartment of female immunocompromised (SCID) mice. In the absence of loading, tibiae developed histologically‐detectable tumors with associated osteolysis and excessive degradation of the proximal bone tissue. In contrast, mechanical loading dramatically reduced osteolysis and tumor formation and increased tibial cancellous mass due to trabecular thickening. These loading effects were similar to the baseline response we observed in non‐injected SCID mice. In vitro mechanical loading of MDA‐MB231 in a pathologically relevant 3D culture model suggested that the observed effects were not due to loading‐induced tumor cell death, but rather mediated via decreased expression of genes interfering with bone homeostasis. Collectively, our results suggest that mechanical loading inhibits the growth and osteolytic capability of secondary breast tumors after their homing to the bone, which may inform future treatment of breast cancer patients with advanced disease. © 2013 American Society for Bone and Mineral Research</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>23649605</pmid><doi>10.1002/jbmr.1966</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-0431
ispartof Journal of bone and mineral research, 2013-11, Vol.28 (11), p.2357-2367
issn 0884-0431
1523-4681
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4498485
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current)
subjects Animals
Bone Neoplasms - complications
Bone Neoplasms - diagnostic imaging
Bone Neoplasms - physiopathology
Bone Neoplasms - secondary
Bone Resorption - complications
Bone Resorption - diagnostic imaging
Bone Resorption - pathology
Bone Resorption - physiopathology
BREAST CANCER
Breast Neoplasms - complications
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Breast Neoplasms - physiopathology
Cell Line, Tumor
Disease Models, Animal
Female
Humans
MECHANICAL LOADING
METASTASIS
Mice
Mice, SCID
OSTEOLYSIS
Osteolysis - complications
Osteolysis - diagnostic imaging
Osteolysis - pathology
Osteolysis - physiopathology
Tibia - pathology
Tibia - physiopathology
Tissue Scaffolds - chemistry
Weight-Bearing
X-Ray Microtomography
title In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20tibial%20compression%20decreases%20osteolysis%20and%20tumor%20formation%20in%20a%20human%20metastatic%20breast%20cancer%20model&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=Lynch,%20Maureen%20E&rft.date=2013-11&rft.volume=28&rft.issue=11&rft.spage=2357&rft.epage=2367&rft.pages=2357-2367&rft.issn=0884-0431&rft.eissn=1523-4681&rft.coden=JBMREJ&rft_id=info:doi/10.1002/jbmr.1966&rft_dat=%3Cproquest_pubme%3E1464506242%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442743749&rft_id=info:pmid/23649605&rfr_iscdi=true