Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells

The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limitin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2015-07, Vol.29 (7), p.1555-1563
Hauptverfasser: Bhanot, H, Reddy, M M, Nonami, A, Weisberg, E L, Bonal, D, Kirschmeier, P T, Salgia, S, Podar, K, Galinsky, I, Chowdary, T K, Neuberg, D, Tonon, G, Stone, R M, Asara, J, Griffin, J D, Sattler, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1563
container_issue 7
container_start_page 1555
container_title Leukemia
container_volume 29
creator Bhanot, H
Reddy, M M
Nonami, A
Weisberg, E L
Bonal, D
Kirschmeier, P T
Salgia, S
Podar, K
Galinsky, I
Chowdary, T K
Neuberg, D
Tonon, G
Stone, R M
Asara, J
Griffin, J D
Sattler, M
description The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMP kinase (AMPK), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism.
doi_str_mv 10.1038/leu.2015.46
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4497855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421909965</galeid><sourcerecordid>A421909965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c706t-7bba268f6b906c9a9ec406393de593b313d32b404b5a94c996555e5e6e4e310b3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhhtR3HH15F0Cggg6Y74zuQjD4hesuAc9h3S6uju7Pclsp3twbv5008w6zsrikkNI1ZM3qXqrKJ4TvCCYLd91MC4oJmLB5YNiRriScyEEeVjM8HKp5lJTflI8SekS4ykpHxcnVCjMxFLNil8XdmhjFxvvbIeabudiAwGST2ho-zg27SGI0i4MrU2ACLKhQmncbHpIyceAYo3gp5sOW0CrrxfoyoeJtG7wWz_skA9ovYMu-grl_17B2lvkoOvS0-JRbbsEz2720-LHxw_fzz7Pz799-nK2Op87heUwV2VpqVzWstRYOm01OI4l06wCoVnJCKsYLTnmpbCaO61l7gEIkMCBEVyy0-L9XnczlmuoHISht53Z9H5t-52J1pvbmeBb08St4VyrpRBZ4PWNQB-vR0iDWfs0lWADxDEZoiglCmOt7kelFkQzyif05T_oZRz7kDthKGNEMqw5-x-VtbjCVAn-l2psB8aHOuZC3PS0WXFKNJ66kqnFHVReVTbFxQC1z_FbF14dXWjBdkObYjcO2fhkVpJgijmT7D7wWPHNHnR9TKmH-mADwWaaaZNnxEwzbbjM9Itj5w7snyHOwNs9kHIqNNAfdecOvd_Jkf7n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694702754</pqid></control><display><type>article</type><title>Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells</title><source>MEDLINE</source><source>Nature Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bhanot, H ; Reddy, M M ; Nonami, A ; Weisberg, E L ; Bonal, D ; Kirschmeier, P T ; Salgia, S ; Podar, K ; Galinsky, I ; Chowdary, T K ; Neuberg, D ; Tonon, G ; Stone, R M ; Asara, J ; Griffin, J D ; Sattler, M</creator><creatorcontrib>Bhanot, H ; Reddy, M M ; Nonami, A ; Weisberg, E L ; Bonal, D ; Kirschmeier, P T ; Salgia, S ; Podar, K ; Galinsky, I ; Chowdary, T K ; Neuberg, D ; Tonon, G ; Stone, R M ; Asara, J ; Griffin, J D ; Sattler, M</creatorcontrib><description>The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMP kinase (AMPK), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2015.46</identifier><identifier>PMID: 25703587</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 631/443/319/320 ; 631/67/1059/602 ; 631/67/1990/283 ; 631/67/1990/283/1897 ; 631/80/86 ; 64/60 ; Activation ; Acute myeloid leukemia ; AMP-Activated Protein Kinases - metabolism ; Animals ; Apoptosis ; Cancer ; Cancer cells ; Cancer Research ; Case-Control Studies ; Cell growth ; Cell Proliferation ; Critical Care Medicine ; Development and progression ; Energy consumption ; Enzymes ; Flow Cytometry ; Genetic aspects ; Genomics ; Glucose ; Glucose metabolism ; Glycogen ; Glycogen - biosynthesis ; Glycogen branching enzyme ; Glycogen synthase ; Glycogen Synthase - antagonists &amp; inhibitors ; Glycogen Synthase - genetics ; Glycogen Synthase - metabolism ; Glycogens ; Glycolysis ; Health aspects ; HEK293 Cells ; Hematology ; Humans ; Intensive ; Internal Medicine ; Kinases ; Leukemia ; Leukemia, Myeloid - metabolism ; Leukemia, Myeloid - mortality ; Leukemia, Myeloid - pathology ; Medical research ; Medicine ; Medicine &amp; Public Health ; Metabolism ; Metabolomics ; Mice ; Myelocytic leukemia ; Myeloid leukemia ; Nonlymphoid leukemia ; Oncology ; original-article ; Phosphorylation ; Physiological aspects ; Prognosis ; Protein kinases ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Small Interfering - genetics ; Science education ; Signal transduction ; Survival Rate ; Transferases ; Tumor Cells, Cultured</subject><ispartof>Leukemia, 2015-07, Vol.29 (7), p.1555-1563</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c706t-7bba268f6b906c9a9ec406393de593b313d32b404b5a94c996555e5e6e4e310b3</citedby><cites>FETCH-LOGICAL-c706t-7bba268f6b906c9a9ec406393de593b313d32b404b5a94c996555e5e6e4e310b3</cites><orcidid>0000-0003-2566-3145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2015.46$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2015.46$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25703587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhanot, H</creatorcontrib><creatorcontrib>Reddy, M M</creatorcontrib><creatorcontrib>Nonami, A</creatorcontrib><creatorcontrib>Weisberg, E L</creatorcontrib><creatorcontrib>Bonal, D</creatorcontrib><creatorcontrib>Kirschmeier, P T</creatorcontrib><creatorcontrib>Salgia, S</creatorcontrib><creatorcontrib>Podar, K</creatorcontrib><creatorcontrib>Galinsky, I</creatorcontrib><creatorcontrib>Chowdary, T K</creatorcontrib><creatorcontrib>Neuberg, D</creatorcontrib><creatorcontrib>Tonon, G</creatorcontrib><creatorcontrib>Stone, R M</creatorcontrib><creatorcontrib>Asara, J</creatorcontrib><creatorcontrib>Griffin, J D</creatorcontrib><creatorcontrib>Sattler, M</creatorcontrib><title>Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMP kinase (AMPK), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism.</description><subject>13/95</subject><subject>631/443/319/320</subject><subject>631/67/1059/602</subject><subject>631/67/1990/283</subject><subject>631/67/1990/283/1897</subject><subject>631/80/86</subject><subject>64/60</subject><subject>Activation</subject><subject>Acute myeloid leukemia</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cancer Research</subject><subject>Case-Control Studies</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>Critical Care Medicine</subject><subject>Development and progression</subject><subject>Energy consumption</subject><subject>Enzymes</subject><subject>Flow Cytometry</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glycogen</subject><subject>Glycogen - biosynthesis</subject><subject>Glycogen branching enzyme</subject><subject>Glycogen synthase</subject><subject>Glycogen Synthase - antagonists &amp; inhibitors</subject><subject>Glycogen Synthase - genetics</subject><subject>Glycogen Synthase - metabolism</subject><subject>Glycogens</subject><subject>Glycolysis</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Hematology</subject><subject>Humans</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid - metabolism</subject><subject>Leukemia, Myeloid - mortality</subject><subject>Leukemia, Myeloid - pathology</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolism</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Myelocytic leukemia</subject><subject>Myeloid leukemia</subject><subject>Nonlymphoid leukemia</subject><subject>Oncology</subject><subject>original-article</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Prognosis</subject><subject>Protein kinases</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>Science education</subject><subject>Signal transduction</subject><subject>Survival Rate</subject><subject>Transferases</subject><subject>Tumor Cells, Cultured</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk2LFDEQhhtR3HH15F0Cggg6Y74zuQjD4hesuAc9h3S6uju7Pclsp3twbv5008w6zsrikkNI1ZM3qXqrKJ4TvCCYLd91MC4oJmLB5YNiRriScyEEeVjM8HKp5lJTflI8SekS4ykpHxcnVCjMxFLNil8XdmhjFxvvbIeabudiAwGST2ho-zg27SGI0i4MrU2ACLKhQmncbHpIyceAYo3gp5sOW0CrrxfoyoeJtG7wWz_skA9ovYMu-grl_17B2lvkoOvS0-JRbbsEz2720-LHxw_fzz7Pz799-nK2Op87heUwV2VpqVzWstRYOm01OI4l06wCoVnJCKsYLTnmpbCaO61l7gEIkMCBEVyy0-L9XnczlmuoHISht53Z9H5t-52J1pvbmeBb08St4VyrpRBZ4PWNQB-vR0iDWfs0lWADxDEZoiglCmOt7kelFkQzyif05T_oZRz7kDthKGNEMqw5-x-VtbjCVAn-l2psB8aHOuZC3PS0WXFKNJ66kqnFHVReVTbFxQC1z_FbF14dXWjBdkObYjcO2fhkVpJgijmT7D7wWPHNHnR9TKmH-mADwWaaaZNnxEwzbbjM9Itj5w7snyHOwNs9kHIqNNAfdecOvd_Jkf7n</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Bhanot, H</creator><creator>Reddy, M M</creator><creator>Nonami, A</creator><creator>Weisberg, E L</creator><creator>Bonal, D</creator><creator>Kirschmeier, P T</creator><creator>Salgia, S</creator><creator>Podar, K</creator><creator>Galinsky, I</creator><creator>Chowdary, T K</creator><creator>Neuberg, D</creator><creator>Tonon, G</creator><creator>Stone, R M</creator><creator>Asara, J</creator><creator>Griffin, J D</creator><creator>Sattler, M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2566-3145</orcidid></search><sort><creationdate>20150701</creationdate><title>Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells</title><author>Bhanot, H ; Reddy, M M ; Nonami, A ; Weisberg, E L ; Bonal, D ; Kirschmeier, P T ; Salgia, S ; Podar, K ; Galinsky, I ; Chowdary, T K ; Neuberg, D ; Tonon, G ; Stone, R M ; Asara, J ; Griffin, J D ; Sattler, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c706t-7bba268f6b906c9a9ec406393de593b313d32b404b5a94c996555e5e6e4e310b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/95</topic><topic>631/443/319/320</topic><topic>631/67/1059/602</topic><topic>631/67/1990/283</topic><topic>631/67/1990/283/1897</topic><topic>631/80/86</topic><topic>64/60</topic><topic>Activation</topic><topic>Acute myeloid leukemia</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cancer Research</topic><topic>Case-Control Studies</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>Critical Care Medicine</topic><topic>Development and progression</topic><topic>Energy consumption</topic><topic>Enzymes</topic><topic>Flow Cytometry</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glycogen</topic><topic>Glycogen - biosynthesis</topic><topic>Glycogen branching enzyme</topic><topic>Glycogen synthase</topic><topic>Glycogen Synthase - antagonists &amp; inhibitors</topic><topic>Glycogen Synthase - genetics</topic><topic>Glycogen Synthase - metabolism</topic><topic>Glycogens</topic><topic>Glycolysis</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Hematology</topic><topic>Humans</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid - metabolism</topic><topic>Leukemia, Myeloid - mortality</topic><topic>Leukemia, Myeloid - pathology</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolism</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Myelocytic leukemia</topic><topic>Myeloid leukemia</topic><topic>Nonlymphoid leukemia</topic><topic>Oncology</topic><topic>original-article</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Prognosis</topic><topic>Protein kinases</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>Science education</topic><topic>Signal transduction</topic><topic>Survival Rate</topic><topic>Transferases</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhanot, H</creatorcontrib><creatorcontrib>Reddy, M M</creatorcontrib><creatorcontrib>Nonami, A</creatorcontrib><creatorcontrib>Weisberg, E L</creatorcontrib><creatorcontrib>Bonal, D</creatorcontrib><creatorcontrib>Kirschmeier, P T</creatorcontrib><creatorcontrib>Salgia, S</creatorcontrib><creatorcontrib>Podar, K</creatorcontrib><creatorcontrib>Galinsky, I</creatorcontrib><creatorcontrib>Chowdary, T K</creatorcontrib><creatorcontrib>Neuberg, D</creatorcontrib><creatorcontrib>Tonon, G</creatorcontrib><creatorcontrib>Stone, R M</creatorcontrib><creatorcontrib>Asara, J</creatorcontrib><creatorcontrib>Griffin, J D</creatorcontrib><creatorcontrib>Sattler, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhanot, H</au><au>Reddy, M M</au><au>Nonami, A</au><au>Weisberg, E L</au><au>Bonal, D</au><au>Kirschmeier, P T</au><au>Salgia, S</au><au>Podar, K</au><au>Galinsky, I</au><au>Chowdary, T K</au><au>Neuberg, D</au><au>Tonon, G</au><au>Stone, R M</au><au>Asara, J</au><au>Griffin, J D</au><au>Sattler, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>29</volume><issue>7</issue><spage>1555</spage><epage>1563</epage><pages>1555-1563</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMP kinase (AMPK), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25703587</pmid><doi>10.1038/leu.2015.46</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2566-3145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2015-07, Vol.29 (7), p.1555-1563
issn 0887-6924
1476-5551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4497855
source MEDLINE; Nature Journals Online; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects 13/95
631/443/319/320
631/67/1059/602
631/67/1990/283
631/67/1990/283/1897
631/80/86
64/60
Activation
Acute myeloid leukemia
AMP-Activated Protein Kinases - metabolism
Animals
Apoptosis
Cancer
Cancer cells
Cancer Research
Case-Control Studies
Cell growth
Cell Proliferation
Critical Care Medicine
Development and progression
Energy consumption
Enzymes
Flow Cytometry
Genetic aspects
Genomics
Glucose
Glucose metabolism
Glycogen
Glycogen - biosynthesis
Glycogen branching enzyme
Glycogen synthase
Glycogen Synthase - antagonists & inhibitors
Glycogen Synthase - genetics
Glycogen Synthase - metabolism
Glycogens
Glycolysis
Health aspects
HEK293 Cells
Hematology
Humans
Intensive
Internal Medicine
Kinases
Leukemia
Leukemia, Myeloid - metabolism
Leukemia, Myeloid - mortality
Leukemia, Myeloid - pathology
Medical research
Medicine
Medicine & Public Health
Metabolism
Metabolomics
Mice
Myelocytic leukemia
Myeloid leukemia
Nonlymphoid leukemia
Oncology
original-article
Phosphorylation
Physiological aspects
Prognosis
Protein kinases
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Small Interfering - genetics
Science education
Signal transduction
Survival Rate
Transferases
Tumor Cells, Cultured
title Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathological%20glycogenesis%20through%20glycogen%20synthase%201%20and%20suppression%20of%20excessive%20AMP%20kinase%20activity%20in%20myeloid%20leukemia%20cells&rft.jtitle=Leukemia&rft.au=Bhanot,%20H&rft.date=2015-07-01&rft.volume=29&rft.issue=7&rft.spage=1555&rft.epage=1563&rft.pages=1555-1563&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2015.46&rft_dat=%3Cgale_pubme%3EA421909965%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694702754&rft_id=info:pmid/25703587&rft_galeid=A421909965&rfr_iscdi=true