Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome

Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2009-07, Vol.13 (7), p.1261-1270
Hauptverfasser: Spaan, Michelle, Porola, Pauliina, Laine, Mikael, Rozman, Blaz, Azuma, Masayuki, Konttinen, Yrjö T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1270
container_issue 7
container_start_page 1261
container_title Journal of cellular and molecular medicine
container_volume 13
creator Spaan, Michelle
Porola, Pauliina
Laine, Mikael
Rozman, Blaz
Azuma, Masayuki
Konttinen, Yrjö T.
description Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS.
doi_str_mv 10.1111/j.1582-4934.2009.00727.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4496140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1828494471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEomXhFZAFElzYYMdOHB9AqpbCglpxAM6W15kkjhJnsZO2uXHlxtPwArwJT4LDRuWPhIQvM9L85tOM54siRHBMwnvaxCTNkzUTlMUJxiLGmCc8vroRHV8Xbi45yWl-FN3xvsGYZoSK29EREYnI04QeR5-3oNqhnlA9dsoir1pzodyEqlbZwiPd20EZixR6sT09-f7pix_bfa0GQHvXa_De2AoZOzilnbGAOqXrEN30BF3WRtfIeFSAU7aCInChy3Sz_Lvm29fKgX3skZ9s4foO7ka3StV6uLfEVfTh5en7zXZ99vbV683J2VqnCedrscuZIJiyhADeCVFyxSjOKGNYsbJUROicpppCkaewyzICWqU8xbTgilCd0VX0_KC7H3cdFBrm6Vu5TCZ7ZeSfFWtqWfUXkjGREYaDwKNFwPUfR_CD7IzX0IYfg370MuOp4JjP4MO_wKYfnQ3LSYo5y3IiUhGoB_-iEsIJZyQcbRXlB0i73nsH5fW8BMvZErKR87XlfHk5W0L-tIS8Cq33f9_3V-PigQA8OwCXpoXpv4Xlm835ecjoD3NmyHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074681959</pqid></control><display><type>article</type><title>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</title><source>Wiley-Blackwell Open Access Titles</source><creator>Spaan, Michelle ; Porola, Pauliina ; Laine, Mikael ; Rozman, Blaz ; Azuma, Masayuki ; Konttinen, Yrjö T.</creator><creatorcontrib>Spaan, Michelle ; Porola, Pauliina ; Laine, Mikael ; Rozman, Blaz ; Azuma, Masayuki ; Konttinen, Yrjö T.</creatorcontrib><description>Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2009.00727.x</identifier><identifier>PMID: 19298523</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>17-Hydroxysteroid Dehydrogenases - genetics ; 17-Hydroxysteroid Dehydrogenases - metabolism ; Acinar cells ; Androgens ; Antibiotics ; Antibodies ; Aromatase ; Aromatase - genetics ; Aromatase - metabolism ; Autoimmune diseases ; Biomarkers ; Biotechnology ; Case-Control Studies ; Cell Communication ; Cell membranes ; Cytoplasm ; Dehydroepiandrosterone ; Dehydroepiandrosterone Sulfate - metabolism ; Dehydrogenases ; Dihydrotestosterone ; Disease ; Enzymes ; Epithelial cells ; Estrogens ; Exocrine glands ; Gene Expression Regulation, Enzymologic ; Health ; Humans ; Immunofluorescence ; intracrinology ; Localization ; Medical disorders ; Metabolism ; Metabolites ; Ribonucleic acid ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saliva ; Salivary gland ; salivary glands ; Salivary Glands - enzymology ; Salivary Glands - metabolism ; Sjogren's syndrome ; Sjogren's Syndrome - enzymology ; Sjogren's Syndrome - metabolism ; Sjogren's Syndrome - pathology ; Sjögren's syndrome ; Staining and Labeling ; Steroid 5α-reductase ; Steroids ; Steryl-Sulfatase - genetics ; Steryl-Sulfatase - metabolism ; Sulfates ; Sulfotransferase ; Sulfotransferases - genetics ; Sulfotransferases - metabolism ; Sulfur ; Womens health</subject><ispartof>Journal of cellular and molecular medicine, 2009-07, Vol.13 (7), p.1261-1270</ispartof><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Jul 2009</rights><rights>2009. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</citedby><cites>FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496140/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496140/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00727.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19298523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spaan, Michelle</creatorcontrib><creatorcontrib>Porola, Pauliina</creatorcontrib><creatorcontrib>Laine, Mikael</creatorcontrib><creatorcontrib>Rozman, Blaz</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Konttinen, Yrjö T.</creatorcontrib><title>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS.</description><subject>17-Hydroxysteroid Dehydrogenases - genetics</subject><subject>17-Hydroxysteroid Dehydrogenases - metabolism</subject><subject>Acinar cells</subject><subject>Androgens</subject><subject>Antibiotics</subject><subject>Antibodies</subject><subject>Aromatase</subject><subject>Aromatase - genetics</subject><subject>Aromatase - metabolism</subject><subject>Autoimmune diseases</subject><subject>Biomarkers</subject><subject>Biotechnology</subject><subject>Case-Control Studies</subject><subject>Cell Communication</subject><subject>Cell membranes</subject><subject>Cytoplasm</subject><subject>Dehydroepiandrosterone</subject><subject>Dehydroepiandrosterone Sulfate - metabolism</subject><subject>Dehydrogenases</subject><subject>Dihydrotestosterone</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Epithelial cells</subject><subject>Estrogens</subject><subject>Exocrine glands</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Health</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>intracrinology</subject><subject>Localization</subject><subject>Medical disorders</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saliva</subject><subject>Salivary gland</subject><subject>salivary glands</subject><subject>Salivary Glands - enzymology</subject><subject>Salivary Glands - metabolism</subject><subject>Sjogren's syndrome</subject><subject>Sjogren's Syndrome - enzymology</subject><subject>Sjogren's Syndrome - metabolism</subject><subject>Sjogren's Syndrome - pathology</subject><subject>Sjögren's syndrome</subject><subject>Staining and Labeling</subject><subject>Steroid 5α-reductase</subject><subject>Steroids</subject><subject>Steryl-Sulfatase - genetics</subject><subject>Steryl-Sulfatase - metabolism</subject><subject>Sulfates</subject><subject>Sulfotransferase</subject><subject>Sulfotransferases - genetics</subject><subject>Sulfotransferases - metabolism</subject><subject>Sulfur</subject><subject>Womens health</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks9u1DAQxiMEomXhFZAFElzYYMdOHB9AqpbCglpxAM6W15kkjhJnsZO2uXHlxtPwArwJT4LDRuWPhIQvM9L85tOM54siRHBMwnvaxCTNkzUTlMUJxiLGmCc8vroRHV8Xbi45yWl-FN3xvsGYZoSK29EREYnI04QeR5-3oNqhnlA9dsoir1pzodyEqlbZwiPd20EZixR6sT09-f7pix_bfa0GQHvXa_De2AoZOzilnbGAOqXrEN30BF3WRtfIeFSAU7aCInChy3Sz_Lvm29fKgX3skZ9s4foO7ka3StV6uLfEVfTh5en7zXZ99vbV683J2VqnCedrscuZIJiyhADeCVFyxSjOKGNYsbJUROicpppCkaewyzICWqU8xbTgilCd0VX0_KC7H3cdFBrm6Vu5TCZ7ZeSfFWtqWfUXkjGREYaDwKNFwPUfR_CD7IzX0IYfg370MuOp4JjP4MO_wKYfnQ3LSYo5y3IiUhGoB_-iEsIJZyQcbRXlB0i73nsH5fW8BMvZErKR87XlfHk5W0L-tIS8Cq33f9_3V-PigQA8OwCXpoXpv4Xlm835ecjoD3NmyHQ</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Spaan, Michelle</creator><creator>Porola, Pauliina</creator><creator>Laine, Mikael</creator><creator>Rozman, Blaz</creator><creator>Azuma, Masayuki</creator><creator>Konttinen, Yrjö T.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley &amp; Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200907</creationdate><title>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</title><author>Spaan, Michelle ; Porola, Pauliina ; Laine, Mikael ; Rozman, Blaz ; Azuma, Masayuki ; Konttinen, Yrjö T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>17-Hydroxysteroid Dehydrogenases - genetics</topic><topic>17-Hydroxysteroid Dehydrogenases - metabolism</topic><topic>Acinar cells</topic><topic>Androgens</topic><topic>Antibiotics</topic><topic>Antibodies</topic><topic>Aromatase</topic><topic>Aromatase - genetics</topic><topic>Aromatase - metabolism</topic><topic>Autoimmune diseases</topic><topic>Biomarkers</topic><topic>Biotechnology</topic><topic>Case-Control Studies</topic><topic>Cell Communication</topic><topic>Cell membranes</topic><topic>Cytoplasm</topic><topic>Dehydroepiandrosterone</topic><topic>Dehydroepiandrosterone Sulfate - metabolism</topic><topic>Dehydrogenases</topic><topic>Dihydrotestosterone</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Epithelial cells</topic><topic>Estrogens</topic><topic>Exocrine glands</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Health</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>intracrinology</topic><topic>Localization</topic><topic>Medical disorders</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saliva</topic><topic>Salivary gland</topic><topic>salivary glands</topic><topic>Salivary Glands - enzymology</topic><topic>Salivary Glands - metabolism</topic><topic>Sjogren's syndrome</topic><topic>Sjogren's Syndrome - enzymology</topic><topic>Sjogren's Syndrome - metabolism</topic><topic>Sjogren's Syndrome - pathology</topic><topic>Sjögren's syndrome</topic><topic>Staining and Labeling</topic><topic>Steroid 5α-reductase</topic><topic>Steroids</topic><topic>Steryl-Sulfatase - genetics</topic><topic>Steryl-Sulfatase - metabolism</topic><topic>Sulfates</topic><topic>Sulfotransferase</topic><topic>Sulfotransferases - genetics</topic><topic>Sulfotransferases - metabolism</topic><topic>Sulfur</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spaan, Michelle</creatorcontrib><creatorcontrib>Porola, Pauliina</creatorcontrib><creatorcontrib>Laine, Mikael</creatorcontrib><creatorcontrib>Rozman, Blaz</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Konttinen, Yrjö T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spaan, Michelle</au><au>Porola, Pauliina</au><au>Laine, Mikael</au><au>Rozman, Blaz</au><au>Azuma, Masayuki</au><au>Konttinen, Yrjö T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2009-07</date><risdate>2009</risdate><volume>13</volume><issue>7</issue><spage>1261</spage><epage>1270</epage><pages>1261-1270</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19298523</pmid><doi>10.1111/j.1582-4934.2009.00727.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2009-07, Vol.13 (7), p.1261-1270
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4496140
source Wiley-Blackwell Open Access Titles
subjects 17-Hydroxysteroid Dehydrogenases - genetics
17-Hydroxysteroid Dehydrogenases - metabolism
Acinar cells
Androgens
Antibiotics
Antibodies
Aromatase
Aromatase - genetics
Aromatase - metabolism
Autoimmune diseases
Biomarkers
Biotechnology
Case-Control Studies
Cell Communication
Cell membranes
Cytoplasm
Dehydroepiandrosterone
Dehydroepiandrosterone Sulfate - metabolism
Dehydrogenases
Dihydrotestosterone
Disease
Enzymes
Epithelial cells
Estrogens
Exocrine glands
Gene Expression Regulation, Enzymologic
Health
Humans
Immunofluorescence
intracrinology
Localization
Medical disorders
Metabolism
Metabolites
Ribonucleic acid
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
Saliva
Salivary gland
salivary glands
Salivary Glands - enzymology
Salivary Glands - metabolism
Sjogren's syndrome
Sjogren's Syndrome - enzymology
Sjogren's Syndrome - metabolism
Sjogren's Syndrome - pathology
Sjögren's syndrome
Staining and Labeling
Steroid 5α-reductase
Steroids
Steryl-Sulfatase - genetics
Steryl-Sulfatase - metabolism
Sulfates
Sulfotransferase
Sulfotransferases - genetics
Sulfotransferases - metabolism
Sulfur
Womens health
title Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Healthy%20human%20salivary%20glands%20contain%20a%20DHEA%E2%80%90sulphate%20processing%20intracrine%20machinery,%20which%20is%20deranged%20in%20primary%20Sj%C3%B6gren's%20syndrome&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Spaan,%20Michelle&rft.date=2009-07&rft.volume=13&rft.issue=7&rft.spage=1261&rft.epage=1270&rft.pages=1261-1270&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2009.00727.x&rft_dat=%3Cproquest_24P%3E1828494471%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074681959&rft_id=info:pmid/19298523&rfr_iscdi=true