Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome
Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests t...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2009-07, Vol.13 (7), p.1261-1270 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1270 |
---|---|
container_issue | 7 |
container_start_page | 1261 |
container_title | Journal of cellular and molecular medicine |
container_volume | 13 |
creator | Spaan, Michelle Porola, Pauliina Laine, Mikael Rozman, Blaz Azuma, Masayuki Konttinen, Yrjö T. |
description | Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS. |
doi_str_mv | 10.1111/j.1582-4934.2009.00727.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4496140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1828494471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEomXhFZAFElzYYMdOHB9AqpbCglpxAM6W15kkjhJnsZO2uXHlxtPwArwJT4LDRuWPhIQvM9L85tOM54siRHBMwnvaxCTNkzUTlMUJxiLGmCc8vroRHV8Xbi45yWl-FN3xvsGYZoSK29EREYnI04QeR5-3oNqhnlA9dsoir1pzodyEqlbZwiPd20EZixR6sT09-f7pix_bfa0GQHvXa_De2AoZOzilnbGAOqXrEN30BF3WRtfIeFSAU7aCInChy3Sz_Lvm29fKgX3skZ9s4foO7ka3StV6uLfEVfTh5en7zXZ99vbV683J2VqnCedrscuZIJiyhADeCVFyxSjOKGNYsbJUROicpppCkaewyzICWqU8xbTgilCd0VX0_KC7H3cdFBrm6Vu5TCZ7ZeSfFWtqWfUXkjGREYaDwKNFwPUfR_CD7IzX0IYfg370MuOp4JjP4MO_wKYfnQ3LSYo5y3IiUhGoB_-iEsIJZyQcbRXlB0i73nsH5fW8BMvZErKR87XlfHk5W0L-tIS8Cq33f9_3V-PigQA8OwCXpoXpv4Xlm835ecjoD3NmyHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074681959</pqid></control><display><type>article</type><title>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</title><source>Wiley-Blackwell Open Access Titles</source><creator>Spaan, Michelle ; Porola, Pauliina ; Laine, Mikael ; Rozman, Blaz ; Azuma, Masayuki ; Konttinen, Yrjö T.</creator><creatorcontrib>Spaan, Michelle ; Porola, Pauliina ; Laine, Mikael ; Rozman, Blaz ; Azuma, Masayuki ; Konttinen, Yrjö T.</creatorcontrib><description>Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2009.00727.x</identifier><identifier>PMID: 19298523</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>17-Hydroxysteroid Dehydrogenases - genetics ; 17-Hydroxysteroid Dehydrogenases - metabolism ; Acinar cells ; Androgens ; Antibiotics ; Antibodies ; Aromatase ; Aromatase - genetics ; Aromatase - metabolism ; Autoimmune diseases ; Biomarkers ; Biotechnology ; Case-Control Studies ; Cell Communication ; Cell membranes ; Cytoplasm ; Dehydroepiandrosterone ; Dehydroepiandrosterone Sulfate - metabolism ; Dehydrogenases ; Dihydrotestosterone ; Disease ; Enzymes ; Epithelial cells ; Estrogens ; Exocrine glands ; Gene Expression Regulation, Enzymologic ; Health ; Humans ; Immunofluorescence ; intracrinology ; Localization ; Medical disorders ; Metabolism ; Metabolites ; Ribonucleic acid ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saliva ; Salivary gland ; salivary glands ; Salivary Glands - enzymology ; Salivary Glands - metabolism ; Sjogren's syndrome ; Sjogren's Syndrome - enzymology ; Sjogren's Syndrome - metabolism ; Sjogren's Syndrome - pathology ; Sjögren's syndrome ; Staining and Labeling ; Steroid 5α-reductase ; Steroids ; Steryl-Sulfatase - genetics ; Steryl-Sulfatase - metabolism ; Sulfates ; Sulfotransferase ; Sulfotransferases - genetics ; Sulfotransferases - metabolism ; Sulfur ; Womens health</subject><ispartof>Journal of cellular and molecular medicine, 2009-07, Vol.13 (7), p.1261-1270</ispartof><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Jul 2009</rights><rights>2009. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</citedby><cites>FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496140/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496140/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00727.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19298523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spaan, Michelle</creatorcontrib><creatorcontrib>Porola, Pauliina</creatorcontrib><creatorcontrib>Laine, Mikael</creatorcontrib><creatorcontrib>Rozman, Blaz</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Konttinen, Yrjö T.</creatorcontrib><title>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS.</description><subject>17-Hydroxysteroid Dehydrogenases - genetics</subject><subject>17-Hydroxysteroid Dehydrogenases - metabolism</subject><subject>Acinar cells</subject><subject>Androgens</subject><subject>Antibiotics</subject><subject>Antibodies</subject><subject>Aromatase</subject><subject>Aromatase - genetics</subject><subject>Aromatase - metabolism</subject><subject>Autoimmune diseases</subject><subject>Biomarkers</subject><subject>Biotechnology</subject><subject>Case-Control Studies</subject><subject>Cell Communication</subject><subject>Cell membranes</subject><subject>Cytoplasm</subject><subject>Dehydroepiandrosterone</subject><subject>Dehydroepiandrosterone Sulfate - metabolism</subject><subject>Dehydrogenases</subject><subject>Dihydrotestosterone</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Epithelial cells</subject><subject>Estrogens</subject><subject>Exocrine glands</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Health</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>intracrinology</subject><subject>Localization</subject><subject>Medical disorders</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saliva</subject><subject>Salivary gland</subject><subject>salivary glands</subject><subject>Salivary Glands - enzymology</subject><subject>Salivary Glands - metabolism</subject><subject>Sjogren's syndrome</subject><subject>Sjogren's Syndrome - enzymology</subject><subject>Sjogren's Syndrome - metabolism</subject><subject>Sjogren's Syndrome - pathology</subject><subject>Sjögren's syndrome</subject><subject>Staining and Labeling</subject><subject>Steroid 5α-reductase</subject><subject>Steroids</subject><subject>Steryl-Sulfatase - genetics</subject><subject>Steryl-Sulfatase - metabolism</subject><subject>Sulfates</subject><subject>Sulfotransferase</subject><subject>Sulfotransferases - genetics</subject><subject>Sulfotransferases - metabolism</subject><subject>Sulfur</subject><subject>Womens health</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks9u1DAQxiMEomXhFZAFElzYYMdOHB9AqpbCglpxAM6W15kkjhJnsZO2uXHlxtPwArwJT4LDRuWPhIQvM9L85tOM54siRHBMwnvaxCTNkzUTlMUJxiLGmCc8vroRHV8Xbi45yWl-FN3xvsGYZoSK29EREYnI04QeR5-3oNqhnlA9dsoir1pzodyEqlbZwiPd20EZixR6sT09-f7pix_bfa0GQHvXa_De2AoZOzilnbGAOqXrEN30BF3WRtfIeFSAU7aCInChy3Sz_Lvm29fKgX3skZ9s4foO7ka3StV6uLfEVfTh5en7zXZ99vbV683J2VqnCedrscuZIJiyhADeCVFyxSjOKGNYsbJUROicpppCkaewyzICWqU8xbTgilCd0VX0_KC7H3cdFBrm6Vu5TCZ7ZeSfFWtqWfUXkjGREYaDwKNFwPUfR_CD7IzX0IYfg370MuOp4JjP4MO_wKYfnQ3LSYo5y3IiUhGoB_-iEsIJZyQcbRXlB0i73nsH5fW8BMvZErKR87XlfHk5W0L-tIS8Cq33f9_3V-PigQA8OwCXpoXpv4Xlm835ecjoD3NmyHQ</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Spaan, Michelle</creator><creator>Porola, Pauliina</creator><creator>Laine, Mikael</creator><creator>Rozman, Blaz</creator><creator>Azuma, Masayuki</creator><creator>Konttinen, Yrjö T.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><general>John Wiley & Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200907</creationdate><title>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</title><author>Spaan, Michelle ; Porola, Pauliina ; Laine, Mikael ; Rozman, Blaz ; Azuma, Masayuki ; Konttinen, Yrjö T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5277-9b849103421e0b99f7a43063440a4ffa19c835c3ed85eb661eca57503d7a13c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>17-Hydroxysteroid Dehydrogenases - genetics</topic><topic>17-Hydroxysteroid Dehydrogenases - metabolism</topic><topic>Acinar cells</topic><topic>Androgens</topic><topic>Antibiotics</topic><topic>Antibodies</topic><topic>Aromatase</topic><topic>Aromatase - genetics</topic><topic>Aromatase - metabolism</topic><topic>Autoimmune diseases</topic><topic>Biomarkers</topic><topic>Biotechnology</topic><topic>Case-Control Studies</topic><topic>Cell Communication</topic><topic>Cell membranes</topic><topic>Cytoplasm</topic><topic>Dehydroepiandrosterone</topic><topic>Dehydroepiandrosterone Sulfate - metabolism</topic><topic>Dehydrogenases</topic><topic>Dihydrotestosterone</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Epithelial cells</topic><topic>Estrogens</topic><topic>Exocrine glands</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Health</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>intracrinology</topic><topic>Localization</topic><topic>Medical disorders</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saliva</topic><topic>Salivary gland</topic><topic>salivary glands</topic><topic>Salivary Glands - enzymology</topic><topic>Salivary Glands - metabolism</topic><topic>Sjogren's syndrome</topic><topic>Sjogren's Syndrome - enzymology</topic><topic>Sjogren's Syndrome - metabolism</topic><topic>Sjogren's Syndrome - pathology</topic><topic>Sjögren's syndrome</topic><topic>Staining and Labeling</topic><topic>Steroid 5α-reductase</topic><topic>Steroids</topic><topic>Steryl-Sulfatase - genetics</topic><topic>Steryl-Sulfatase - metabolism</topic><topic>Sulfates</topic><topic>Sulfotransferase</topic><topic>Sulfotransferases - genetics</topic><topic>Sulfotransferases - metabolism</topic><topic>Sulfur</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spaan, Michelle</creatorcontrib><creatorcontrib>Porola, Pauliina</creatorcontrib><creatorcontrib>Laine, Mikael</creatorcontrib><creatorcontrib>Rozman, Blaz</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Konttinen, Yrjö T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spaan, Michelle</au><au>Porola, Pauliina</au><au>Laine, Mikael</au><au>Rozman, Blaz</au><au>Azuma, Masayuki</au><au>Konttinen, Yrjö T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2009-07</date><risdate>2009</risdate><volume>13</volume><issue>7</issue><spage>1261</spage><epage>1270</epage><pages>1261-1270</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Sjögren's syndrome (SS) patients have low salivary dehydroepiandrosterone (DHEA) and androgen biomarker levels, but high salivary oestrogen levels. The hypothesis was that the healthy glands contain DHEA‐sulphate processing intracrine machinery; the local androgen/oestrogen imbalance suggests that this is disarranged in SS. Indirect immunofluorescence and quantitative real‐time PCR (qRT‐PCR) of steroid sulphatase, sulfotransferase, 3β‐ and 17β‐hydroxysteroid dehydrogenases (3β‐ and 17β‐HSD), 5α‐reductase and aromatase were performed for labial salivary glands of healthy controls and persons with SS. In control acini steroid sulphatase and sulfotransferase immunoreactivities were located in the basolateral cell parts. 3β‐ and 17β‐HSD formed strong, interrupted bands along the basal cell parts. 5α‐reductase was mainly located in acinar cell nuclei and aromatase in the apical cell membrane. All enzymes were more widespread in ducts. In SS, steroid sulphatase was weak and deranged, 3β‐ and 17β‐HSD had lost their strict basal acinar cell localization and 5α‐reductase was mainly found in the cytoplasm of the acinar cells, whereas aromatase showed similar staining in SS and controls. qRT‐PCR of labial salivary glands disclosed all corresponding enzyme mRNAs with the levels of 3β‐HSD in SS being the lowest. Healthy tubuloacinar epithelial cells contain complete intracrine machineries for DHEA(‐sulphate) pro‐hormone processing. These enzymes have in healthy acini an organized architecture, which corresponds with DHEA uptake from the circulation, nuclear site of production of the active dihydrotestosterone (DHT) end product and production of oestrogens into saliva for export to ductal and oral epithelial cells. SS is characterized by low 3β‐HSD levels, which together with impaired subcellular compartmentalization of HSDs and 5α‐reductase may explain the low local DHT and androgen biomarker levels in SS.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19298523</pmid><doi>10.1111/j.1582-4934.2009.00727.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2009-07, Vol.13 (7), p.1261-1270 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4496140 |
source | Wiley-Blackwell Open Access Titles |
subjects | 17-Hydroxysteroid Dehydrogenases - genetics 17-Hydroxysteroid Dehydrogenases - metabolism Acinar cells Androgens Antibiotics Antibodies Aromatase Aromatase - genetics Aromatase - metabolism Autoimmune diseases Biomarkers Biotechnology Case-Control Studies Cell Communication Cell membranes Cytoplasm Dehydroepiandrosterone Dehydroepiandrosterone Sulfate - metabolism Dehydrogenases Dihydrotestosterone Disease Enzymes Epithelial cells Estrogens Exocrine glands Gene Expression Regulation, Enzymologic Health Humans Immunofluorescence intracrinology Localization Medical disorders Metabolism Metabolites Ribonucleic acid RNA RNA, Messenger - genetics RNA, Messenger - metabolism Saliva Salivary gland salivary glands Salivary Glands - enzymology Salivary Glands - metabolism Sjogren's syndrome Sjogren's Syndrome - enzymology Sjogren's Syndrome - metabolism Sjogren's Syndrome - pathology Sjögren's syndrome Staining and Labeling Steroid 5α-reductase Steroids Steryl-Sulfatase - genetics Steryl-Sulfatase - metabolism Sulfates Sulfotransferase Sulfotransferases - genetics Sulfotransferases - metabolism Sulfur Womens health |
title | Healthy human salivary glands contain a DHEA‐sulphate processing intracrine machinery, which is deranged in primary Sjögren's syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Healthy%20human%20salivary%20glands%20contain%20a%20DHEA%E2%80%90sulphate%20processing%20intracrine%20machinery,%20which%20is%20deranged%20in%20primary%20Sj%C3%B6gren's%20syndrome&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Spaan,%20Michelle&rft.date=2009-07&rft.volume=13&rft.issue=7&rft.spage=1261&rft.epage=1270&rft.pages=1261-1270&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2009.00727.x&rft_dat=%3Cproquest_24P%3E1828494471%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074681959&rft_id=info:pmid/19298523&rfr_iscdi=true |