Stochastic solutions for fractional wave equations
A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2015-06, Vol.80 (4), p.1685-1695 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1695 |
---|---|
container_issue | 4 |
container_start_page | 1685 |
container_title | Nonlinear dynamics |
container_volume | 80 |
creator | Meerschaert, Mark M. Schilling, René L. Sikorskii, Alla |
description | A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative. |
doi_str_mv | 10.1007/s11071-014-1299-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4489163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259426645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVJaTZpP0AvxZBLL05HI1mWLoESmj8Q6KEt7E3MWnLi4LUSyd7QfPrK3XTbBgo9CfF-8_RGj7G3HI45QP0hcQ41L4HLkqMx5eMLtuBVLUpUZrnHFmBQlmBguc8OUroFAIGgX7F9VFwqWakFwy9jaG4ojV1TpNBPYxeGVLQhFm2kZr5RXzzQxhf-fqKf6mv2sqU--TdP5yH7dvbp6-lFefX5_PL041XZ5AhjSavKk4Manfa1QucqV1GtYeXmFIit5gKF0FqQIeVItwjUkq-cwpXUIA7Zydb3blqtvWv8MEbq7V3s1hS_20Cd_VsZuht7HTZWSm24Etng_ZNBDPeTT6Ndd6nxfU-DD1OyXKNSqOX_oDWYWgCaKqNHz9DbMMX8TckiVkZmTzlTfEs1MaQUfbvLzcHO5dlteTaXZ-fy7GOeeffnwruJX21lALdAytJw7ePvp__t-gPScqVV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259426645</pqid></control><display><type>article</type><title>Stochastic solutions for fractional wave equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Meerschaert, Mark M. ; Schilling, René L. ; Sikorskii, Alla</creator><creatorcontrib>Meerschaert, Mark M. ; Schilling, René L. ; Sikorskii, Alla</creatorcontrib><description>A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-014-1299-z</identifier><identifier>PMID: 26146456</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Derivatives ; Dynamical Systems ; Engineering ; Inverse ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Stochastic models ; Stochasticity ; Vibration ; Wave equations ; Wave propagation</subject><ispartof>Nonlinear dynamics, 2015-06, Vol.80 (4), p.1685-1695</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</citedby><cites>FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-014-1299-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-014-1299-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26146456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Schilling, René L.</creatorcontrib><creatorcontrib>Sikorskii, Alla</creatorcontrib><title>Stochastic solutions for fractional wave equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><addtitle>Nonlinear Dyn</addtitle><description>A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Derivatives</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Inverse</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Vibration</subject><subject>Wave equations</subject><subject>Wave propagation</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU9r3DAQxUVJaTZpP0AvxZBLL05HI1mWLoESmj8Q6KEt7E3MWnLi4LUSyd7QfPrK3XTbBgo9CfF-8_RGj7G3HI45QP0hcQ41L4HLkqMx5eMLtuBVLUpUZrnHFmBQlmBguc8OUroFAIGgX7F9VFwqWakFwy9jaG4ojV1TpNBPYxeGVLQhFm2kZr5RXzzQxhf-fqKf6mv2sqU--TdP5yH7dvbp6-lFefX5_PL041XZ5AhjSavKk4Manfa1QucqV1GtYeXmFIit5gKF0FqQIeVItwjUkq-cwpXUIA7Zydb3blqtvWv8MEbq7V3s1hS_20Cd_VsZuht7HTZWSm24Etng_ZNBDPeTT6Ndd6nxfU-DD1OyXKNSqOX_oDWYWgCaKqNHz9DbMMX8TckiVkZmTzlTfEs1MaQUfbvLzcHO5dlteTaXZ-fy7GOeeffnwruJX21lALdAytJw7ePvp__t-gPScqVV</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Meerschaert, Mark M.</creator><creator>Schilling, René L.</creator><creator>Sikorskii, Alla</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150601</creationdate><title>Stochastic solutions for fractional wave equations</title><author>Meerschaert, Mark M. ; Schilling, René L. ; Sikorskii, Alla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Derivatives</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Inverse</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Vibration</topic><topic>Wave equations</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Schilling, René L.</creatorcontrib><creatorcontrib>Sikorskii, Alla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meerschaert, Mark M.</au><au>Schilling, René L.</au><au>Sikorskii, Alla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic solutions for fractional wave equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><addtitle>Nonlinear Dyn</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>80</volume><issue>4</issue><spage>1685</spage><epage>1695</epage><pages>1685-1695</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>26146456</pmid><doi>10.1007/s11071-014-1299-z</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2015-06, Vol.80 (4), p.1685-1695 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4489163 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Classical Mechanics Control Derivatives Dynamical Systems Engineering Inverse Mathematical models Mechanical Engineering Nonlinear dynamics Original Paper Stochastic models Stochasticity Vibration Wave equations Wave propagation |
title | Stochastic solutions for fractional wave equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20solutions%20for%20fractional%20wave%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Meerschaert,%20Mark%20M.&rft.date=2015-06-01&rft.volume=80&rft.issue=4&rft.spage=1685&rft.epage=1695&rft.pages=1685-1695&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-014-1299-z&rft_dat=%3Cproquest_pubme%3E2259426645%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259426645&rft_id=info:pmid/26146456&rfr_iscdi=true |