Stochastic solutions for fractional wave equations

A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2015-06, Vol.80 (4), p.1685-1695
Hauptverfasser: Meerschaert, Mark M., Schilling, René L., Sikorskii, Alla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1695
container_issue 4
container_start_page 1685
container_title Nonlinear dynamics
container_volume 80
creator Meerschaert, Mark M.
Schilling, René L.
Sikorskii, Alla
description A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.
doi_str_mv 10.1007/s11071-014-1299-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4489163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259426645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVJaTZpP0AvxZBLL05HI1mWLoESmj8Q6KEt7E3MWnLi4LUSyd7QfPrK3XTbBgo9CfF-8_RGj7G3HI45QP0hcQ41L4HLkqMx5eMLtuBVLUpUZrnHFmBQlmBguc8OUroFAIGgX7F9VFwqWakFwy9jaG4ojV1TpNBPYxeGVLQhFm2kZr5RXzzQxhf-fqKf6mv2sqU--TdP5yH7dvbp6-lFefX5_PL041XZ5AhjSavKk4Manfa1QucqV1GtYeXmFIit5gKF0FqQIeVItwjUkq-cwpXUIA7Zydb3blqtvWv8MEbq7V3s1hS_20Cd_VsZuht7HTZWSm24Etng_ZNBDPeTT6Ndd6nxfU-DD1OyXKNSqOX_oDWYWgCaKqNHz9DbMMX8TckiVkZmTzlTfEs1MaQUfbvLzcHO5dlteTaXZ-fy7GOeeffnwruJX21lALdAytJw7ePvp__t-gPScqVV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259426645</pqid></control><display><type>article</type><title>Stochastic solutions for fractional wave equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Meerschaert, Mark M. ; Schilling, René L. ; Sikorskii, Alla</creator><creatorcontrib>Meerschaert, Mark M. ; Schilling, René L. ; Sikorskii, Alla</creatorcontrib><description>A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-014-1299-z</identifier><identifier>PMID: 26146456</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Derivatives ; Dynamical Systems ; Engineering ; Inverse ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Stochastic models ; Stochasticity ; Vibration ; Wave equations ; Wave propagation</subject><ispartof>Nonlinear dynamics, 2015-06, Vol.80 (4), p.1685-1695</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</citedby><cites>FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-014-1299-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-014-1299-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26146456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Schilling, René L.</creatorcontrib><creatorcontrib>Sikorskii, Alla</creatorcontrib><title>Stochastic solutions for fractional wave equations</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><addtitle>Nonlinear Dyn</addtitle><description>A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Derivatives</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Inverse</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Vibration</subject><subject>Wave equations</subject><subject>Wave propagation</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU9r3DAQxUVJaTZpP0AvxZBLL05HI1mWLoESmj8Q6KEt7E3MWnLi4LUSyd7QfPrK3XTbBgo9CfF-8_RGj7G3HI45QP0hcQ41L4HLkqMx5eMLtuBVLUpUZrnHFmBQlmBguc8OUroFAIGgX7F9VFwqWakFwy9jaG4ojV1TpNBPYxeGVLQhFm2kZr5RXzzQxhf-fqKf6mv2sqU--TdP5yH7dvbp6-lFefX5_PL041XZ5AhjSavKk4Manfa1QucqV1GtYeXmFIit5gKF0FqQIeVItwjUkq-cwpXUIA7Zydb3blqtvWv8MEbq7V3s1hS_20Cd_VsZuht7HTZWSm24Etng_ZNBDPeTT6Ndd6nxfU-DD1OyXKNSqOX_oDWYWgCaKqNHz9DbMMX8TckiVkZmTzlTfEs1MaQUfbvLzcHO5dlteTaXZ-fy7GOeeffnwruJX21lALdAytJw7ePvp__t-gPScqVV</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Meerschaert, Mark M.</creator><creator>Schilling, René L.</creator><creator>Sikorskii, Alla</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150601</creationdate><title>Stochastic solutions for fractional wave equations</title><author>Meerschaert, Mark M. ; Schilling, René L. ; Sikorskii, Alla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-ab5ead072d8e762dd5d5a780bd032022f813233883a9a6da8f20afae5d62b4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Derivatives</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Inverse</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Vibration</topic><topic>Wave equations</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Schilling, René L.</creatorcontrib><creatorcontrib>Sikorskii, Alla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meerschaert, Mark M.</au><au>Schilling, René L.</au><au>Sikorskii, Alla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic solutions for fractional wave equations</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><addtitle>Nonlinear Dyn</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>80</volume><issue>4</issue><spage>1685</spage><epage>1695</epage><pages>1685-1695</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>26146456</pmid><doi>10.1007/s11071-014-1299-z</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2015-06, Vol.80 (4), p.1685-1695
issn 0924-090X
1573-269X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4489163
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Classical Mechanics
Control
Derivatives
Dynamical Systems
Engineering
Inverse
Mathematical models
Mechanical Engineering
Nonlinear dynamics
Original Paper
Stochastic models
Stochasticity
Vibration
Wave equations
Wave propagation
title Stochastic solutions for fractional wave equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20solutions%20for%20fractional%20wave%20equations&rft.jtitle=Nonlinear%20dynamics&rft.au=Meerschaert,%20Mark%20M.&rft.date=2015-06-01&rft.volume=80&rft.issue=4&rft.spage=1685&rft.epage=1695&rft.pages=1685-1695&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-014-1299-z&rft_dat=%3Cproquest_pubme%3E2259426645%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259426645&rft_id=info:pmid/26146456&rfr_iscdi=true