Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk
A novel process for effective separation of phospholipids, triacylglycerol and cholesterol from fresh egg yolk has been developed and validated in this study. Ethanol was the only organic solvent used in the whole procedure. Following initial separation of protein and total lipids by ethanol, most o...
Gespeichert in:
Veröffentlicht in: | Journal of food science and technology 2015-07, Vol.52 (7), p.4586-4592 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4592 |
---|---|
container_issue | 7 |
container_start_page | 4586 |
container_title | Journal of food science and technology |
container_volume | 52 |
creator | Su, Yujie Tian, Ying Yan, Ruhui Wang, Chenying Niu, Fuge Yang, Yanjun |
description | A novel process for effective separation of phospholipids, triacylglycerol and cholesterol from fresh egg yolk has been developed and validated in this study. Ethanol was the only organic solvent used in the whole procedure. Following initial separation of protein and total lipids by ethanol, most of solidified triacylglycerol was removed from total lipids by low temperature treatment of ethanol extracts within 10 h. Then, β-cyclodextrin (β-CD) was used to remove cholesterol from the remaining ethanol extracts and recycling of β-CD was also studied to obtain cholesterol and reusable β-CD powder. The highest cholesterol removal rate of nearly 99 % was obtained at β-CD: cholesterol molar ratio of 5:1, water addition of 15 g/g β-CD and reacting temperature of 50 °C. Ethanol in residual ethanol extracts was removed for obtaining phospholipids by rotary evaporation. The phospholipids produced in this procedure without cholesterol could be safety used as emulsifiers in food or cosmetic industry. |
doi_str_mv | 10.1007/s13197-014-1513-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4486573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000301912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c709t-bc11e63eb91921bf4f6986a60afc2dfd55df41cccf005949f8a8b1e4830c6ffd3</originalsourceid><addsrcrecordid>eNqFkV9r1jAUxoM43Jj7AN5IwBsvrOYkTdvcCDLmHxh4se06pOlJ3255m5q0g357U985piAGQhLO7zwn5zyEvAL2HhirPyQQoOqCQVmABFHIZ-SEqVoWTcn483xnnBcAUh6Ts5RuWV6C1w1nL8gxr0AoxdUJubual26lYaSGjuEePZ1isJgSdSHSeYc04WSimYeMBEenXUh5-2EauvSOznEwdvW9Xy3G4KkZO2pzGNP86-1i2FPse7oGf_eSHDnjE549nKfk5vPF9fnX4vL7l2_nny4LWzM1F60FwEpgq0BxaF3pKtVUpmLGWd65TsrOlWCtdYxJVSrXmKYFLBvBbOVcJ07Jx4PutLR77CyOczReT3HYm7jqYAb9Z2QcdroP97osm0rWIgu8fRCI4ceSe9H7IVn03owYlqT5NksGCvh_UaiUqHMfckPf_IXehiWOeRIbxblQjdxqw4GyMaQU0T3-G5jejNcH43U2Xm_Ga5lzXj9t-DHjt80Z4Acg5dDYY3xS-p-qPwE3iLq2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692239853</pqid></control><display><type>article</type><title>Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Su, Yujie ; Tian, Ying ; Yan, Ruhui ; Wang, Chenying ; Niu, Fuge ; Yang, Yanjun</creator><creatorcontrib>Su, Yujie ; Tian, Ying ; Yan, Ruhui ; Wang, Chenying ; Niu, Fuge ; Yang, Yanjun</creatorcontrib><description>A novel process for effective separation of phospholipids, triacylglycerol and cholesterol from fresh egg yolk has been developed and validated in this study. Ethanol was the only organic solvent used in the whole procedure. Following initial separation of protein and total lipids by ethanol, most of solidified triacylglycerol was removed from total lipids by low temperature treatment of ethanol extracts within 10 h. Then, β-cyclodextrin (β-CD) was used to remove cholesterol from the remaining ethanol extracts and recycling of β-CD was also studied to obtain cholesterol and reusable β-CD powder. The highest cholesterol removal rate of nearly 99 % was obtained at β-CD: cholesterol molar ratio of 5:1, water addition of 15 g/g β-CD and reacting temperature of 50 °C. Ethanol in residual ethanol extracts was removed for obtaining phospholipids by rotary evaporation. The phospholipids produced in this procedure without cholesterol could be safety used as emulsifiers in food or cosmetic industry.</description><identifier>ISSN: 0022-1155</identifier><identifier>EISSN: 0975-8402</identifier><identifier>DOI: 10.1007/s13197-014-1513-5</identifier><identifier>PMID: 26139929</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Aqueous solutions ; beta-cyclodextrin ; Cardiovascular disease ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cholesterol ; Crystallization ; egg yolk ; Eggs ; emulsifiers ; Ethanol ; Evaporation ; Extraction processes ; Fatty acids ; Food Science ; Hyperlipidemia ; industry ; Investigations ; Lipids ; Low temperature ; Nutrition ; Original ; Original Article ; phospholipids ; Phosphorus ; protein content ; Solvents ; Studies ; Temperature ; Toxicity ; triacylglycerols</subject><ispartof>Journal of food science and technology, 2015-07, Vol.52 (7), p.4586-4592</ispartof><rights>Association of Food Scientists & Technologists (India) 2014</rights><rights>Association of Food Scientists & Technologists (India) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c709t-bc11e63eb91921bf4f6986a60afc2dfd55df41cccf005949f8a8b1e4830c6ffd3</citedby><cites>FETCH-LOGICAL-c709t-bc11e63eb91921bf4f6986a60afc2dfd55df41cccf005949f8a8b1e4830c6ffd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486573/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486573/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26139929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Yujie</creatorcontrib><creatorcontrib>Tian, Ying</creatorcontrib><creatorcontrib>Yan, Ruhui</creatorcontrib><creatorcontrib>Wang, Chenying</creatorcontrib><creatorcontrib>Niu, Fuge</creatorcontrib><creatorcontrib>Yang, Yanjun</creatorcontrib><title>Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk</title><title>Journal of food science and technology</title><addtitle>J Food Sci Technol</addtitle><addtitle>J Food Sci Technol</addtitle><description>A novel process for effective separation of phospholipids, triacylglycerol and cholesterol from fresh egg yolk has been developed and validated in this study. Ethanol was the only organic solvent used in the whole procedure. Following initial separation of protein and total lipids by ethanol, most of solidified triacylglycerol was removed from total lipids by low temperature treatment of ethanol extracts within 10 h. Then, β-cyclodextrin (β-CD) was used to remove cholesterol from the remaining ethanol extracts and recycling of β-CD was also studied to obtain cholesterol and reusable β-CD powder. The highest cholesterol removal rate of nearly 99 % was obtained at β-CD: cholesterol molar ratio of 5:1, water addition of 15 g/g β-CD and reacting temperature of 50 °C. Ethanol in residual ethanol extracts was removed for obtaining phospholipids by rotary evaporation. The phospholipids produced in this procedure without cholesterol could be safety used as emulsifiers in food or cosmetic industry.</description><subject>Aqueous solutions</subject><subject>beta-cyclodextrin</subject><subject>Cardiovascular disease</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cholesterol</subject><subject>Crystallization</subject><subject>egg yolk</subject><subject>Eggs</subject><subject>emulsifiers</subject><subject>Ethanol</subject><subject>Evaporation</subject><subject>Extraction processes</subject><subject>Fatty acids</subject><subject>Food Science</subject><subject>Hyperlipidemia</subject><subject>industry</subject><subject>Investigations</subject><subject>Lipids</subject><subject>Low temperature</subject><subject>Nutrition</subject><subject>Original</subject><subject>Original Article</subject><subject>phospholipids</subject><subject>Phosphorus</subject><subject>protein content</subject><subject>Solvents</subject><subject>Studies</subject><subject>Temperature</subject><subject>Toxicity</subject><subject>triacylglycerols</subject><issn>0022-1155</issn><issn>0975-8402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkV9r1jAUxoM43Jj7AN5IwBsvrOYkTdvcCDLmHxh4se06pOlJ3255m5q0g357U985piAGQhLO7zwn5zyEvAL2HhirPyQQoOqCQVmABFHIZ-SEqVoWTcn483xnnBcAUh6Ts5RuWV6C1w1nL8gxr0AoxdUJubual26lYaSGjuEePZ1isJgSdSHSeYc04WSimYeMBEenXUh5-2EauvSOznEwdvW9Xy3G4KkZO2pzGNP86-1i2FPse7oGf_eSHDnjE549nKfk5vPF9fnX4vL7l2_nny4LWzM1F60FwEpgq0BxaF3pKtVUpmLGWd65TsrOlWCtdYxJVSrXmKYFLBvBbOVcJ07Jx4PutLR77CyOczReT3HYm7jqYAb9Z2QcdroP97osm0rWIgu8fRCI4ceSe9H7IVn03owYlqT5NksGCvh_UaiUqHMfckPf_IXehiWOeRIbxblQjdxqw4GyMaQU0T3-G5jejNcH43U2Xm_Ga5lzXj9t-DHjt80Z4Acg5dDYY3xS-p-qPwE3iLq2</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Su, Yujie</creator><creator>Tian, Ying</creator><creator>Yan, Ruhui</creator><creator>Wang, Chenying</creator><creator>Niu, Fuge</creator><creator>Yang, Yanjun</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04S</scope><scope>04W</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk</title><author>Su, Yujie ; Tian, Ying ; Yan, Ruhui ; Wang, Chenying ; Niu, Fuge ; Yang, Yanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c709t-bc11e63eb91921bf4f6986a60afc2dfd55df41cccf005949f8a8b1e4830c6ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>beta-cyclodextrin</topic><topic>Cardiovascular disease</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cholesterol</topic><topic>Crystallization</topic><topic>egg yolk</topic><topic>Eggs</topic><topic>emulsifiers</topic><topic>Ethanol</topic><topic>Evaporation</topic><topic>Extraction processes</topic><topic>Fatty acids</topic><topic>Food Science</topic><topic>Hyperlipidemia</topic><topic>industry</topic><topic>Investigations</topic><topic>Lipids</topic><topic>Low temperature</topic><topic>Nutrition</topic><topic>Original</topic><topic>Original Article</topic><topic>phospholipids</topic><topic>Phosphorus</topic><topic>protein content</topic><topic>Solvents</topic><topic>Studies</topic><topic>Temperature</topic><topic>Toxicity</topic><topic>triacylglycerols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Yujie</creatorcontrib><creatorcontrib>Tian, Ying</creatorcontrib><creatorcontrib>Yan, Ruhui</creatorcontrib><creatorcontrib>Wang, Chenying</creatorcontrib><creatorcontrib>Niu, Fuge</creatorcontrib><creatorcontrib>Yang, Yanjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Business</collection><collection>India Database: Science & Technology</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of food science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Yujie</au><au>Tian, Ying</au><au>Yan, Ruhui</au><au>Wang, Chenying</au><au>Niu, Fuge</au><au>Yang, Yanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk</atitle><jtitle>Journal of food science and technology</jtitle><stitle>J Food Sci Technol</stitle><addtitle>J Food Sci Technol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>52</volume><issue>7</issue><spage>4586</spage><epage>4592</epage><pages>4586-4592</pages><issn>0022-1155</issn><eissn>0975-8402</eissn><abstract>A novel process for effective separation of phospholipids, triacylglycerol and cholesterol from fresh egg yolk has been developed and validated in this study. Ethanol was the only organic solvent used in the whole procedure. Following initial separation of protein and total lipids by ethanol, most of solidified triacylglycerol was removed from total lipids by low temperature treatment of ethanol extracts within 10 h. Then, β-cyclodextrin (β-CD) was used to remove cholesterol from the remaining ethanol extracts and recycling of β-CD was also studied to obtain cholesterol and reusable β-CD powder. The highest cholesterol removal rate of nearly 99 % was obtained at β-CD: cholesterol molar ratio of 5:1, water addition of 15 g/g β-CD and reacting temperature of 50 °C. Ethanol in residual ethanol extracts was removed for obtaining phospholipids by rotary evaporation. The phospholipids produced in this procedure without cholesterol could be safety used as emulsifiers in food or cosmetic industry.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>26139929</pmid><doi>10.1007/s13197-014-1513-5</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1155 |
ispartof | Journal of food science and technology, 2015-07, Vol.52 (7), p.4586-4592 |
issn | 0022-1155 0975-8402 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4486573 |
source | SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Aqueous solutions beta-cyclodextrin Cardiovascular disease Chemistry Chemistry and Materials Science Chemistry/Food Science Cholesterol Crystallization egg yolk Eggs emulsifiers Ethanol Evaporation Extraction processes Fatty acids Food Science Hyperlipidemia industry Investigations Lipids Low temperature Nutrition Original Original Article phospholipids Phosphorus protein content Solvents Studies Temperature Toxicity triacylglycerols |
title | Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20a%20novel%20process%20for%20the%20separation%20of%20phospholipids,%20triacylglycerol%20and%20cholesterol%20from%20egg%20yolk&rft.jtitle=Journal%20of%20food%20science%20and%20technology&rft.au=Su,%20Yujie&rft.date=2015-07-01&rft.volume=52&rft.issue=7&rft.spage=4586&rft.epage=4592&rft.pages=4586-4592&rft.issn=0022-1155&rft.eissn=0975-8402&rft_id=info:doi/10.1007/s13197-014-1513-5&rft_dat=%3Cproquest_pubme%3E2000301912%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692239853&rft_id=info:pmid/26139929&rfr_iscdi=true |