Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers
In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-prote...
Gespeichert in:
Veröffentlicht in: | The Journal of general physiology 2015-07, Vol.146 (1), p.97-108 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | The Journal of general physiology |
container_volume | 146 |
creator | Beqollari, Donald Romberg, Christin F Filipova, Dilyana Meza, Ulises Papadopoulos, Symeon Bannister, Roger A |
description | In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for β(1a) has been difficult to test because β(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, β(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a β(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with β(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β(1a) subunit in skeletal-type EC coupling. |
doi_str_mv | 10.1085/jgp.201411314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4485024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692752340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f3403022cef3a5bdb18ce4cec84ba18c853bea8508c51cbf370a1cdc5a347e683</originalsourceid><addsrcrecordid>eNpdkUtLxDAURoMoOo4u3UrBjZtqntO4EWTwBYogug7pndsxY9qMTSv67019DGo2uXAPH-fyEbLH6BGjWh0v5ssjTplkTDC5RkZMSZoXhdTrZEQp5znjJ2qLbMe4oOkpTjfJFp_QQlOlRuT2HuusbyD0S48xwzdwne1caHIITddaGObsc-2aeeaazM5632XxGT121md1H8FjVrkS27hDNirrI-5-_2PyeHH-ML3Kb-4ur6dnNzlIprq8EpKK5AZYCavKWck0oAQELUubZq1EiVYrqkExKCtRUMtgBsoKWeBEizE5_cpd9mWNM8BB1Ztl62rbvptgnfm7adyTmYdXI2VK5TIFHH4HtOGlx9iZ2kVA722DoY-GTU54ofjgOSYH_9BF6NsmnTdQUsmkWSQq_6KgDTG2WK1kGDVDUSYVZVZFJX7_9wUr-qcZ8QHn3JCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694545087</pqid></control><display><type>article</type><title>Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Beqollari, Donald ; Romberg, Christin F ; Filipova, Dilyana ; Meza, Ulises ; Papadopoulos, Symeon ; Bannister, Roger A</creator><creatorcontrib>Beqollari, Donald ; Romberg, Christin F ; Filipova, Dilyana ; Meza, Ulises ; Papadopoulos, Symeon ; Bannister, Roger A</creatorcontrib><description>In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for β(1a) has been difficult to test because β(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, β(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a β(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with β(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β(1a) subunit in skeletal-type EC coupling.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.201411314</identifier><identifier>PMID: 26078055</identifier><identifier>CODEN: JGPLAD</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Biochemistry ; Calcium ; Calcium - metabolism ; Calcium Channels, L-Type - metabolism ; Calcium Signaling - physiology ; Cell Membrane - metabolism ; Cell Membrane - physiology ; Excitation Contraction Coupling - physiology ; Male ; Membranes ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins - metabolism ; Muscle Contraction - physiology ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - physiology ; Musculoskeletal system ; Physiology ; Protein Binding - physiology ; Protein expression ; Ryanodine Receptor Calcium Release Channel - metabolism ; Sarcoplasmic Reticulum - metabolism ; Sarcoplasmic Reticulum - physiology ; Signal transduction</subject><ispartof>The Journal of general physiology, 2015-07, Vol.146 (1), p.97-108</ispartof><rights>2015 Beqollari et al.</rights><rights>Copyright Rockefeller University Press Jul 2015</rights><rights>2015 Beqollari et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f3403022cef3a5bdb18ce4cec84ba18c853bea8508c51cbf370a1cdc5a347e683</citedby><cites>FETCH-LOGICAL-c415t-f3403022cef3a5bdb18ce4cec84ba18c853bea8508c51cbf370a1cdc5a347e683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26078055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beqollari, Donald</creatorcontrib><creatorcontrib>Romberg, Christin F</creatorcontrib><creatorcontrib>Filipova, Dilyana</creatorcontrib><creatorcontrib>Meza, Ulises</creatorcontrib><creatorcontrib>Papadopoulos, Symeon</creatorcontrib><creatorcontrib>Bannister, Roger A</creatorcontrib><title>Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for β(1a) has been difficult to test because β(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, β(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a β(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with β(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β(1a) subunit in skeletal-type EC coupling.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - physiology</subject><subject>Excitation Contraction Coupling - physiology</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Sequence Data</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Musculoskeletal system</subject><subject>Physiology</subject><subject>Protein Binding - physiology</subject><subject>Protein expression</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Sarcoplasmic Reticulum - physiology</subject><subject>Signal transduction</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLxDAURoMoOo4u3UrBjZtqntO4EWTwBYogug7pndsxY9qMTSv67019DGo2uXAPH-fyEbLH6BGjWh0v5ssjTplkTDC5RkZMSZoXhdTrZEQp5znjJ2qLbMe4oOkpTjfJFp_QQlOlRuT2HuusbyD0S48xwzdwne1caHIITddaGObsc-2aeeaazM5632XxGT121md1H8FjVrkS27hDNirrI-5-_2PyeHH-ML3Kb-4ur6dnNzlIprq8EpKK5AZYCavKWck0oAQELUubZq1EiVYrqkExKCtRUMtgBsoKWeBEizE5_cpd9mWNM8BB1Ztl62rbvptgnfm7adyTmYdXI2VK5TIFHH4HtOGlx9iZ2kVA722DoY-GTU54ofjgOSYH_9BF6NsmnTdQUsmkWSQq_6KgDTG2WK1kGDVDUSYVZVZFJX7_9wUr-qcZ8QHn3JCA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Beqollari, Donald</creator><creator>Romberg, Christin F</creator><creator>Filipova, Dilyana</creator><creator>Meza, Ulises</creator><creator>Papadopoulos, Symeon</creator><creator>Bannister, Roger A</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers</title><author>Beqollari, Donald ; Romberg, Christin F ; Filipova, Dilyana ; Meza, Ulises ; Papadopoulos, Symeon ; Bannister, Roger A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f3403022cef3a5bdb18ce4cec84ba18c853bea8508c51cbf370a1cdc5a347e683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - physiology</topic><topic>Excitation Contraction Coupling - physiology</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Sequence Data</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Musculoskeletal system</topic><topic>Physiology</topic><topic>Protein Binding - physiology</topic><topic>Protein expression</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Sarcoplasmic Reticulum - physiology</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beqollari, Donald</creatorcontrib><creatorcontrib>Romberg, Christin F</creatorcontrib><creatorcontrib>Filipova, Dilyana</creatorcontrib><creatorcontrib>Meza, Ulises</creatorcontrib><creatorcontrib>Papadopoulos, Symeon</creatorcontrib><creatorcontrib>Bannister, Roger A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beqollari, Donald</au><au>Romberg, Christin F</au><au>Filipova, Dilyana</au><au>Meza, Ulises</au><au>Papadopoulos, Symeon</au><au>Bannister, Roger A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>146</volume><issue>1</issue><spage>97</spage><epage>108</epage><pages>97-108</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><coden>JGPLAD</coden><abstract>In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for β(1a) has been difficult to test because β(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, β(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a β(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with β(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β(1a) subunit in skeletal-type EC coupling.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>26078055</pmid><doi>10.1085/jgp.201411314</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1295 |
ispartof | The Journal of general physiology, 2015-07, Vol.146 (1), p.97-108 |
issn | 0022-1295 1540-7748 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4485024 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Biochemistry Calcium Calcium - metabolism Calcium Channels, L-Type - metabolism Calcium Signaling - physiology Cell Membrane - metabolism Cell Membrane - physiology Excitation Contraction Coupling - physiology Male Membranes Mice Mice, Inbred C57BL Molecular Sequence Data Monomeric GTP-Binding Proteins - metabolism Muscle Contraction - physiology Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - physiology Musculoskeletal system Physiology Protein Binding - physiology Protein expression Ryanodine Receptor Calcium Release Channel - metabolism Sarcoplasmic Reticulum - metabolism Sarcoplasmic Reticulum - physiology Signal transduction |
title | Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rem%20uncouples%20excitation-contraction%20coupling%20in%20adult%20skeletal%20muscle%20fibers&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Beqollari,%20Donald&rft.date=2015-07-01&rft.volume=146&rft.issue=1&rft.spage=97&rft.epage=108&rft.pages=97-108&rft.issn=0022-1295&rft.eissn=1540-7748&rft.coden=JGPLAD&rft_id=info:doi/10.1085/jgp.201411314&rft_dat=%3Cproquest_pubme%3E1692752340%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694545087&rft_id=info:pmid/26078055&rfr_iscdi=true |