Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions

Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2015-06, Vol.35 (25), p.9255-9264
Hauptverfasser: Phillips, Holly N, Blenkmann, Alejandro, Hughes, Laura E, Bekinschtein, Tristan A, Rowe, James B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9264
container_issue 25
container_start_page 9255
container_title The Journal of neuroscience
container_volume 35
creator Phillips, Holly N
Blenkmann, Alejandro
Hughes, Laura E
Bekinschtein, Tristan A
Rowe, James B
description Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.
doi_str_mv 10.1523/JNEUROSCI.5095-14.2015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4478247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727700110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-c9f68ed6102567deb6fe980ad51441eab9a7497cd7b836a5102e728cd254f02d3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhK1Q-cskydvwnuSChpaVFpYsoPVteZ9I1JPFiOyD49Hhpu4ITpzm83zy9mUfICYMlk7x-9f7q9ObT-np1sZTQyoqJJQcmH5FFUduKC2CPyQK4hkoJLY7Is5S-AIAGpp-SI64YtEqyBRnPPUYb3dY7O9B1vLWT_2WzDxMNPT2LYcoh47gLschXmH-E-DXRPkSat0g_Ruy8e6Cvsx_nwVPrYkiJfpiH7HcD0rd-xCkVKD0nT3o7JHxxP4_Jzdnp59V5dbl-d7F6c1k5yepcubZXDXYlJJdKd7hRPbYN2E4yIRjaTWu1aLXr9KaplZWFQ80b13EpeuBdfUxe3_nu5s2IncMpl_xmF_1o408TrDf_KpPfmtvw3QihGy50MXh5bxDDtxlTNqNPDofBThjmZJjmWgMwBv9HVcsUQM1EQdUd-udBEftDIgZmX6s51Gr2tRomzL7Wsnjy9z2HtYce69_IZKId</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691600314</pqid></control><display><type>article</type><title>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Phillips, Holly N ; Blenkmann, Alejandro ; Hughes, Laura E ; Bekinschtein, Tristan A ; Rowe, James B</creator><creatorcontrib>Phillips, Holly N ; Blenkmann, Alejandro ; Hughes, Laura E ; Bekinschtein, Tristan A ; Rowe, James B</creatorcontrib><description>Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5095-14.2015</identifier><identifier>PMID: 26109651</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Acoustic Stimulation ; Adolescent ; Adult ; Bayes Theorem ; Brain - physiology ; Evoked Potentials, Auditory - physiology ; Female ; Humans ; Magnetoencephalography ; Male ; Models, Neurological ; Nerve Net ; Signal Processing, Computer-Assisted ; Young Adult</subject><ispartof>The Journal of neuroscience, 2015-06, Vol.35 (25), p.9255-9264</ispartof><rights>Copyright © 2015 Phillips et al.</rights><rights>Copyright © 2015 Phillips et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-c9f68ed6102567deb6fe980ad51441eab9a7497cd7b836a5102e728cd254f02d3</citedby><orcidid>0000-0003-1172-391X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478247/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478247/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26109651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phillips, Holly N</creatorcontrib><creatorcontrib>Blenkmann, Alejandro</creatorcontrib><creatorcontrib>Hughes, Laura E</creatorcontrib><creatorcontrib>Bekinschtein, Tristan A</creatorcontrib><creatorcontrib>Rowe, James B</creatorcontrib><title>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.</description><subject>Acoustic Stimulation</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Bayes Theorem</subject><subject>Brain - physiology</subject><subject>Evoked Potentials, Auditory - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Nerve Net</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Young Adult</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhK1Q-cskydvwnuSChpaVFpYsoPVteZ9I1JPFiOyD49Hhpu4ITpzm83zy9mUfICYMlk7x-9f7q9ObT-np1sZTQyoqJJQcmH5FFUduKC2CPyQK4hkoJLY7Is5S-AIAGpp-SI64YtEqyBRnPPUYb3dY7O9B1vLWT_2WzDxMNPT2LYcoh47gLschXmH-E-DXRPkSat0g_Ruy8e6Cvsx_nwVPrYkiJfpiH7HcD0rd-xCkVKD0nT3o7JHxxP4_Jzdnp59V5dbl-d7F6c1k5yepcubZXDXYlJJdKd7hRPbYN2E4yIRjaTWu1aLXr9KaplZWFQ80b13EpeuBdfUxe3_nu5s2IncMpl_xmF_1o408TrDf_KpPfmtvw3QihGy50MXh5bxDDtxlTNqNPDofBThjmZJjmWgMwBv9HVcsUQM1EQdUd-udBEftDIgZmX6s51Gr2tRomzL7Wsnjy9z2HtYce69_IZKId</recordid><startdate>20150624</startdate><enddate>20150624</enddate><creator>Phillips, Holly N</creator><creator>Blenkmann, Alejandro</creator><creator>Hughes, Laura E</creator><creator>Bekinschtein, Tristan A</creator><creator>Rowe, James B</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1172-391X</orcidid></search><sort><creationdate>20150624</creationdate><title>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</title><author>Phillips, Holly N ; Blenkmann, Alejandro ; Hughes, Laura E ; Bekinschtein, Tristan A ; Rowe, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-c9f68ed6102567deb6fe980ad51441eab9a7497cd7b836a5102e728cd254f02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic Stimulation</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Bayes Theorem</topic><topic>Brain - physiology</topic><topic>Evoked Potentials, Auditory - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Nerve Net</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Holly N</creatorcontrib><creatorcontrib>Blenkmann, Alejandro</creatorcontrib><creatorcontrib>Hughes, Laura E</creatorcontrib><creatorcontrib>Bekinschtein, Tristan A</creatorcontrib><creatorcontrib>Rowe, James B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Holly N</au><au>Blenkmann, Alejandro</au><au>Hughes, Laura E</au><au>Bekinschtein, Tristan A</au><au>Rowe, James B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2015-06-24</date><risdate>2015</risdate><volume>35</volume><issue>25</issue><spage>9255</spage><epage>9264</epage><pages>9255-9264</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>26109651</pmid><doi>10.1523/JNEUROSCI.5095-14.2015</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1172-391X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2015-06, Vol.35 (25), p.9255-9264
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4478247
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Acoustic Stimulation
Adolescent
Adult
Bayes Theorem
Brain - physiology
Evoked Potentials, Auditory - physiology
Female
Humans
Magnetoencephalography
Male
Models, Neurological
Nerve Net
Signal Processing, Computer-Assisted
Young Adult
title Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Organization%20of%20Frontotemporal%20Networks%20for%20the%20Prediction%20of%20Stimuli%20across%20Multiple%20Dimensions&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Phillips,%20Holly%20N&rft.date=2015-06-24&rft.volume=35&rft.issue=25&rft.spage=9255&rft.epage=9264&rft.pages=9255-9264&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5095-14.2015&rft_dat=%3Cproquest_pubme%3E1727700110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691600314&rft_id=info:pmid/26109651&rfr_iscdi=true