Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions
Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectati...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2015-06, Vol.35 (25), p.9255-9264 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9264 |
---|---|
container_issue | 25 |
container_start_page | 9255 |
container_title | The Journal of neuroscience |
container_volume | 35 |
creator | Phillips, Holly N Blenkmann, Alejandro Hughes, Laura E Bekinschtein, Tristan A Rowe, James B |
description | Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders. |
doi_str_mv | 10.1523/JNEUROSCI.5095-14.2015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4478247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727700110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-c9f68ed6102567deb6fe980ad51441eab9a7497cd7b836a5102e728cd254f02d3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhK1Q-cskydvwnuSChpaVFpYsoPVteZ9I1JPFiOyD49Hhpu4ITpzm83zy9mUfICYMlk7x-9f7q9ObT-np1sZTQyoqJJQcmH5FFUduKC2CPyQK4hkoJLY7Is5S-AIAGpp-SI64YtEqyBRnPPUYb3dY7O9B1vLWT_2WzDxMNPT2LYcoh47gLschXmH-E-DXRPkSat0g_Ruy8e6Cvsx_nwVPrYkiJfpiH7HcD0rd-xCkVKD0nT3o7JHxxP4_Jzdnp59V5dbl-d7F6c1k5yepcubZXDXYlJJdKd7hRPbYN2E4yIRjaTWu1aLXr9KaplZWFQ80b13EpeuBdfUxe3_nu5s2IncMpl_xmF_1o408TrDf_KpPfmtvw3QihGy50MXh5bxDDtxlTNqNPDofBThjmZJjmWgMwBv9HVcsUQM1EQdUd-udBEftDIgZmX6s51Gr2tRomzL7Wsnjy9z2HtYce69_IZKId</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691600314</pqid></control><display><type>article</type><title>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Phillips, Holly N ; Blenkmann, Alejandro ; Hughes, Laura E ; Bekinschtein, Tristan A ; Rowe, James B</creator><creatorcontrib>Phillips, Holly N ; Blenkmann, Alejandro ; Hughes, Laura E ; Bekinschtein, Tristan A ; Rowe, James B</creatorcontrib><description>Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5095-14.2015</identifier><identifier>PMID: 26109651</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Acoustic Stimulation ; Adolescent ; Adult ; Bayes Theorem ; Brain - physiology ; Evoked Potentials, Auditory - physiology ; Female ; Humans ; Magnetoencephalography ; Male ; Models, Neurological ; Nerve Net ; Signal Processing, Computer-Assisted ; Young Adult</subject><ispartof>The Journal of neuroscience, 2015-06, Vol.35 (25), p.9255-9264</ispartof><rights>Copyright © 2015 Phillips et al.</rights><rights>Copyright © 2015 Phillips et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-c9f68ed6102567deb6fe980ad51441eab9a7497cd7b836a5102e728cd254f02d3</citedby><orcidid>0000-0003-1172-391X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478247/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478247/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26109651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phillips, Holly N</creatorcontrib><creatorcontrib>Blenkmann, Alejandro</creatorcontrib><creatorcontrib>Hughes, Laura E</creatorcontrib><creatorcontrib>Bekinschtein, Tristan A</creatorcontrib><creatorcontrib>Rowe, James B</creatorcontrib><title>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.</description><subject>Acoustic Stimulation</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Bayes Theorem</subject><subject>Brain - physiology</subject><subject>Evoked Potentials, Auditory - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Nerve Net</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Young Adult</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhK1Q-cskydvwnuSChpaVFpYsoPVteZ9I1JPFiOyD49Hhpu4ITpzm83zy9mUfICYMlk7x-9f7q9ObT-np1sZTQyoqJJQcmH5FFUduKC2CPyQK4hkoJLY7Is5S-AIAGpp-SI64YtEqyBRnPPUYb3dY7O9B1vLWT_2WzDxMNPT2LYcoh47gLschXmH-E-DXRPkSat0g_Ruy8e6Cvsx_nwVPrYkiJfpiH7HcD0rd-xCkVKD0nT3o7JHxxP4_Jzdnp59V5dbl-d7F6c1k5yepcubZXDXYlJJdKd7hRPbYN2E4yIRjaTWu1aLXr9KaplZWFQ80b13EpeuBdfUxe3_nu5s2IncMpl_xmF_1o408TrDf_KpPfmtvw3QihGy50MXh5bxDDtxlTNqNPDofBThjmZJjmWgMwBv9HVcsUQM1EQdUd-udBEftDIgZmX6s51Gr2tRomzL7Wsnjy9z2HtYce69_IZKId</recordid><startdate>20150624</startdate><enddate>20150624</enddate><creator>Phillips, Holly N</creator><creator>Blenkmann, Alejandro</creator><creator>Hughes, Laura E</creator><creator>Bekinschtein, Tristan A</creator><creator>Rowe, James B</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1172-391X</orcidid></search><sort><creationdate>20150624</creationdate><title>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</title><author>Phillips, Holly N ; Blenkmann, Alejandro ; Hughes, Laura E ; Bekinschtein, Tristan A ; Rowe, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-c9f68ed6102567deb6fe980ad51441eab9a7497cd7b836a5102e728cd254f02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic Stimulation</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Bayes Theorem</topic><topic>Brain - physiology</topic><topic>Evoked Potentials, Auditory - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Nerve Net</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Holly N</creatorcontrib><creatorcontrib>Blenkmann, Alejandro</creatorcontrib><creatorcontrib>Hughes, Laura E</creatorcontrib><creatorcontrib>Bekinschtein, Tristan A</creatorcontrib><creatorcontrib>Rowe, James B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Holly N</au><au>Blenkmann, Alejandro</au><au>Hughes, Laura E</au><au>Bekinschtein, Tristan A</au><au>Rowe, James B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2015-06-24</date><risdate>2015</risdate><volume>35</volume><issue>25</issue><spage>9255</spage><epage>9264</epage><pages>9255-9264</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>26109651</pmid><doi>10.1523/JNEUROSCI.5095-14.2015</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1172-391X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2015-06, Vol.35 (25), p.9255-9264 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4478247 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Acoustic Stimulation Adolescent Adult Bayes Theorem Brain - physiology Evoked Potentials, Auditory - physiology Female Humans Magnetoencephalography Male Models, Neurological Nerve Net Signal Processing, Computer-Assisted Young Adult |
title | Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Organization%20of%20Frontotemporal%20Networks%20for%20the%20Prediction%20of%20Stimuli%20across%20Multiple%20Dimensions&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Phillips,%20Holly%20N&rft.date=2015-06-24&rft.volume=35&rft.issue=25&rft.spage=9255&rft.epage=9264&rft.pages=9255-9264&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5095-14.2015&rft_dat=%3Cproquest_pubme%3E1727700110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691600314&rft_id=info:pmid/26109651&rfr_iscdi=true |