Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions
In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechan...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2015-06, Vol.34 (12), p.1704-1717 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1717 |
---|---|
container_issue | 12 |
container_start_page | 1704 |
container_title | The EMBO journal |
container_volume | 34 |
creator | Cussiol, José R Jablonowski, Carolyn M Yimit, Askar Brown, Grant W Smolka, Marcus B |
description | In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions.
Synopsis
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast.
Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp.
A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4.
MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9.
MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function.
Graphical Abstract
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast. |
doi_str_mv | 10.15252/embj.201490834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4475403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3713545011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEokvhzA1F4tJL2nFiOw4HpHa3LVTtIsEiuFmOM0m9TezFzrb035NtympBQpzm4O-9eZ4XRa8JHBKWsvQIu3J5mAKhBYiMPokmhHJIUsjZ02gCKScJJaLYi16EsAQAJnLyPNpLmSg4g2ISfZmpboXW2CaezY_jSnWqwVhfo75ZOWP7OJjGqrbdALdGxdo5Xxmreqzik8_TRVy5ThkbDyh6pXvjbHgZPatVG_DV49yPvp6dLqYfkstP5x-nx5eJ5imhCYLGiglSAfBSl1nFM16mFGvCKK-wVjVJtcAyL1la1DUFwkCoMssK0KLKi2w_ej_6rtZlh5VG23vVypU3nfL30ikj_3yx5lo27lZSmjMK2WBw8Gjg3Y81hl52JmhsW2XRrYMkXAgAMRxtQN_-hS7d2g-XeaByAaRgm0RHI6W9C8FjvQ1DQD4UJjeFyW1hg-LN7h-2_O-GBuDdCNyZFu__5ydPr04udt1hFIdBZxv0O6n_GSgZJSb0-HO7T_kbyfMsZ_Lb_FwuCj6_4Fff5Sz7BUbcwjk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687801959</pqid></control><display><type>article</type><title>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</title><source>Springer Nature OA Free Journals</source><creator>Cussiol, José R ; Jablonowski, Carolyn M ; Yimit, Askar ; Brown, Grant W ; Smolka, Marcus B</creator><creatorcontrib>Cussiol, José R ; Jablonowski, Carolyn M ; Yimit, Askar ; Brown, Grant W ; Smolka, Marcus B</creatorcontrib><description>In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions.
Synopsis
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast.
Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp.
A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4.
MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9.
MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function.
Graphical Abstract
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201490834</identifier><identifier>PMID: 25896509</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Blotting, Western ; BRCT domain ; Cell cycle ; Cell Cycle Checkpoints - physiology ; Cell Cycle Proteins - metabolism ; checkpoint ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Damage - physiology ; DNA repair ; Dpb11 ; Electrophoresis, Gel, Pulsed-Field ; EMBO13 ; Immunoprecipitation ; Models, Biological ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Phosphatase ; Protein Engineering - methods ; Protein Structure, Tertiary ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - physiology ; Slx4 ; Yeasts</subject><ispartof>The EMBO journal, 2015-06, Vol.34 (12), p.1704-1717</ispartof><rights>The Authors 2015</rights><rights>2015 The Authors</rights><rights>2015 The Authors.</rights><rights>2015 EMBO</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</citedby><cites>FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475403/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475403/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201490834$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25896509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cussiol, José R</creatorcontrib><creatorcontrib>Jablonowski, Carolyn M</creatorcontrib><creatorcontrib>Yimit, Askar</creatorcontrib><creatorcontrib>Brown, Grant W</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><title>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions.
Synopsis
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast.
Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp.
A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4.
MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9.
MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function.
Graphical Abstract
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast.</description><subject>Blotting, Western</subject><subject>BRCT domain</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - physiology</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>checkpoint</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - physiology</subject><subject>DNA repair</subject><subject>Dpb11</subject><subject>Electrophoresis, Gel, Pulsed-Field</subject><subject>EMBO13</subject><subject>Immunoprecipitation</subject><subject>Models, Biological</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphatase</subject><subject>Protein Engineering - methods</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Slx4</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEokvhzA1F4tJL2nFiOw4HpHa3LVTtIsEiuFmOM0m9TezFzrb035NtympBQpzm4O-9eZ4XRa8JHBKWsvQIu3J5mAKhBYiMPokmhHJIUsjZ02gCKScJJaLYi16EsAQAJnLyPNpLmSg4g2ISfZmpboXW2CaezY_jSnWqwVhfo75ZOWP7OJjGqrbdALdGxdo5Xxmreqzik8_TRVy5ThkbDyh6pXvjbHgZPatVG_DV49yPvp6dLqYfkstP5x-nx5eJ5imhCYLGiglSAfBSl1nFM16mFGvCKK-wVjVJtcAyL1la1DUFwkCoMssK0KLKi2w_ej_6rtZlh5VG23vVypU3nfL30ikj_3yx5lo27lZSmjMK2WBw8Gjg3Y81hl52JmhsW2XRrYMkXAgAMRxtQN_-hS7d2g-XeaByAaRgm0RHI6W9C8FjvQ1DQD4UJjeFyW1hg-LN7h-2_O-GBuDdCNyZFu__5ydPr04udt1hFIdBZxv0O6n_GSgZJSb0-HO7T_kbyfMsZ_Lb_FwuCj6_4Fff5Sz7BUbcwjk</recordid><startdate>20150612</startdate><enddate>20150612</enddate><creator>Cussiol, José R</creator><creator>Jablonowski, Carolyn M</creator><creator>Yimit, Askar</creator><creator>Brown, Grant W</creator><creator>Smolka, Marcus B</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>BlackWell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150612</creationdate><title>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</title><author>Cussiol, José R ; Jablonowski, Carolyn M ; Yimit, Askar ; Brown, Grant W ; Smolka, Marcus B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Blotting, Western</topic><topic>BRCT domain</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - physiology</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>checkpoint</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - physiology</topic><topic>DNA repair</topic><topic>Dpb11</topic><topic>Electrophoresis, Gel, Pulsed-Field</topic><topic>EMBO13</topic><topic>Immunoprecipitation</topic><topic>Models, Biological</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphatase</topic><topic>Protein Engineering - methods</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Slx4</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cussiol, José R</creatorcontrib><creatorcontrib>Jablonowski, Carolyn M</creatorcontrib><creatorcontrib>Yimit, Askar</creatorcontrib><creatorcontrib>Brown, Grant W</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cussiol, José R</au><au>Jablonowski, Carolyn M</au><au>Yimit, Askar</au><au>Brown, Grant W</au><au>Smolka, Marcus B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2015-06-12</date><risdate>2015</risdate><volume>34</volume><issue>12</issue><spage>1704</spage><epage>1717</epage><pages>1704-1717</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions.
Synopsis
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast.
Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp.
A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4.
MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9.
MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function.
Graphical Abstract
The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>25896509</pmid><doi>10.15252/embj.201490834</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2015-06, Vol.34 (12), p.1704-1717 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4475403 |
source | Springer Nature OA Free Journals |
subjects | Blotting, Western BRCT domain Cell cycle Cell Cycle Checkpoints - physiology Cell Cycle Proteins - metabolism checkpoint Deoxyribonucleic acid DNA DNA damage DNA Damage - physiology DNA repair Dpb11 Electrophoresis, Gel, Pulsed-Field EMBO13 Immunoprecipitation Models, Biological Nuclear Proteins - genetics Nuclear Proteins - metabolism Phosphatase Protein Engineering - methods Protein Structure, Tertiary Recombinant Proteins - genetics Recombinant Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Signal Transduction - physiology Slx4 Yeasts |
title | Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dampening%20DNA%20damage%20checkpoint%20signalling%20via%20coordinated%20BRCT%20domain%20interactions&rft.jtitle=The%20EMBO%20journal&rft.au=Cussiol,%20Jos%C3%A9%20R&rft.date=2015-06-12&rft.volume=34&rft.issue=12&rft.spage=1704&rft.epage=1717&rft.pages=1704-1717&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201490834&rft_dat=%3Cproquest_C6C%3E3713545011%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687801959&rft_id=info:pmid/25896509&rfr_iscdi=true |