Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions

In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2015-06, Vol.34 (12), p.1704-1717
Hauptverfasser: Cussiol, José R, Jablonowski, Carolyn M, Yimit, Askar, Brown, Grant W, Smolka, Marcus B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1717
container_issue 12
container_start_page 1704
container_title The EMBO journal
container_volume 34
creator Cussiol, José R
Jablonowski, Carolyn M
Yimit, Askar
Brown, Grant W
Smolka, Marcus B
description In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions. Synopsis The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast. Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp. A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4. MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9. MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function. Graphical Abstract The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast.
doi_str_mv 10.15252/embj.201490834
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4475403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3713545011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEokvhzA1F4tJL2nFiOw4HpHa3LVTtIsEiuFmOM0m9TezFzrb035NtympBQpzm4O-9eZ4XRa8JHBKWsvQIu3J5mAKhBYiMPokmhHJIUsjZ02gCKScJJaLYi16EsAQAJnLyPNpLmSg4g2ISfZmpboXW2CaezY_jSnWqwVhfo75ZOWP7OJjGqrbdALdGxdo5Xxmreqzik8_TRVy5ThkbDyh6pXvjbHgZPatVG_DV49yPvp6dLqYfkstP5x-nx5eJ5imhCYLGiglSAfBSl1nFM16mFGvCKK-wVjVJtcAyL1la1DUFwkCoMssK0KLKi2w_ej_6rtZlh5VG23vVypU3nfL30ikj_3yx5lo27lZSmjMK2WBw8Gjg3Y81hl52JmhsW2XRrYMkXAgAMRxtQN_-hS7d2g-XeaByAaRgm0RHI6W9C8FjvQ1DQD4UJjeFyW1hg-LN7h-2_O-GBuDdCNyZFu__5ydPr04udt1hFIdBZxv0O6n_GSgZJSb0-HO7T_kbyfMsZ_Lb_FwuCj6_4Fff5Sz7BUbcwjk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687801959</pqid></control><display><type>article</type><title>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</title><source>Springer Nature OA Free Journals</source><creator>Cussiol, José R ; Jablonowski, Carolyn M ; Yimit, Askar ; Brown, Grant W ; Smolka, Marcus B</creator><creatorcontrib>Cussiol, José R ; Jablonowski, Carolyn M ; Yimit, Askar ; Brown, Grant W ; Smolka, Marcus B</creatorcontrib><description>In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions. Synopsis The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast. Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp. A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4. MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9. MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function. Graphical Abstract The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201490834</identifier><identifier>PMID: 25896509</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Blotting, Western ; BRCT domain ; Cell cycle ; Cell Cycle Checkpoints - physiology ; Cell Cycle Proteins - metabolism ; checkpoint ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Damage - physiology ; DNA repair ; Dpb11 ; Electrophoresis, Gel, Pulsed-Field ; EMBO13 ; Immunoprecipitation ; Models, Biological ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Phosphatase ; Protein Engineering - methods ; Protein Structure, Tertiary ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - physiology ; Slx4 ; Yeasts</subject><ispartof>The EMBO journal, 2015-06, Vol.34 (12), p.1704-1717</ispartof><rights>The Authors 2015</rights><rights>2015 The Authors</rights><rights>2015 The Authors.</rights><rights>2015 EMBO</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</citedby><cites>FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475403/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475403/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201490834$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25896509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cussiol, José R</creatorcontrib><creatorcontrib>Jablonowski, Carolyn M</creatorcontrib><creatorcontrib>Yimit, Askar</creatorcontrib><creatorcontrib>Brown, Grant W</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><title>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions. Synopsis The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast. Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp. A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4. MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9. MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function. Graphical Abstract The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast.</description><subject>Blotting, Western</subject><subject>BRCT domain</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - physiology</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>checkpoint</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - physiology</subject><subject>DNA repair</subject><subject>Dpb11</subject><subject>Electrophoresis, Gel, Pulsed-Field</subject><subject>EMBO13</subject><subject>Immunoprecipitation</subject><subject>Models, Biological</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphatase</subject><subject>Protein Engineering - methods</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Slx4</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEokvhzA1F4tJL2nFiOw4HpHa3LVTtIsEiuFmOM0m9TezFzrb035NtympBQpzm4O-9eZ4XRa8JHBKWsvQIu3J5mAKhBYiMPokmhHJIUsjZ02gCKScJJaLYi16EsAQAJnLyPNpLmSg4g2ISfZmpboXW2CaezY_jSnWqwVhfo75ZOWP7OJjGqrbdALdGxdo5Xxmreqzik8_TRVy5ThkbDyh6pXvjbHgZPatVG_DV49yPvp6dLqYfkstP5x-nx5eJ5imhCYLGiglSAfBSl1nFM16mFGvCKK-wVjVJtcAyL1la1DUFwkCoMssK0KLKi2w_ej_6rtZlh5VG23vVypU3nfL30ikj_3yx5lo27lZSmjMK2WBw8Gjg3Y81hl52JmhsW2XRrYMkXAgAMRxtQN_-hS7d2g-XeaByAaRgm0RHI6W9C8FjvQ1DQD4UJjeFyW1hg-LN7h-2_O-GBuDdCNyZFu__5ydPr04udt1hFIdBZxv0O6n_GSgZJSb0-HO7T_kbyfMsZ_Lb_FwuCj6_4Fff5Sz7BUbcwjk</recordid><startdate>20150612</startdate><enddate>20150612</enddate><creator>Cussiol, José R</creator><creator>Jablonowski, Carolyn M</creator><creator>Yimit, Askar</creator><creator>Brown, Grant W</creator><creator>Smolka, Marcus B</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>BlackWell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150612</creationdate><title>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</title><author>Cussiol, José R ; Jablonowski, Carolyn M ; Yimit, Askar ; Brown, Grant W ; Smolka, Marcus B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6214-e0ced581d006bcb3d636b24ef1546defaf12c8eb7b529ff401508ab3390c8d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Blotting, Western</topic><topic>BRCT domain</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - physiology</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>checkpoint</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - physiology</topic><topic>DNA repair</topic><topic>Dpb11</topic><topic>Electrophoresis, Gel, Pulsed-Field</topic><topic>EMBO13</topic><topic>Immunoprecipitation</topic><topic>Models, Biological</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphatase</topic><topic>Protein Engineering - methods</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Slx4</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cussiol, José R</creatorcontrib><creatorcontrib>Jablonowski, Carolyn M</creatorcontrib><creatorcontrib>Yimit, Askar</creatorcontrib><creatorcontrib>Brown, Grant W</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cussiol, José R</au><au>Jablonowski, Carolyn M</au><au>Yimit, Askar</au><au>Brown, Grant W</au><au>Smolka, Marcus B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2015-06-12</date><risdate>2015</risdate><volume>34</volume><issue>12</issue><spage>1704</spage><epage>1717</epage><pages>1704-1717</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions. Synopsis The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent downregulation of DNA damage response signals in yeast. Checkpoint dampening by the Rtt107‐Slx4‐Dpb11 complex relies on a ‘two‐site‐docking’ mechanism requiring phosphorylation sites on histone H2A and on the 9‐1‐1 clamp. A minimal BRCT‐domain module (MBD) recapitulates the Rtt107‐Slx4‐Dpb11 complex role in checkpoint dampening and fully rescues MMS sensitivity of cells lacking Slx4. MBD dampens Rad53 activation by specifically counteracting the checkpoint adaptor Rad9. MBD transiently interacts with the 9‐1‐1 clamp and the Mus81 nuclease, but dampens the checkpoint independent of Mus81 function. Graphical Abstract The DNA repair scaffold proteins Slx4 and Rtt107 utilize a minimal multi‐BRCT‐domain module for phosphatase‐independent down‐regulation of DNA damage response signals in yeast.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>25896509</pmid><doi>10.15252/embj.201490834</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2015-06, Vol.34 (12), p.1704-1717
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4475403
source Springer Nature OA Free Journals
subjects Blotting, Western
BRCT domain
Cell cycle
Cell Cycle Checkpoints - physiology
Cell Cycle Proteins - metabolism
checkpoint
Deoxyribonucleic acid
DNA
DNA damage
DNA Damage - physiology
DNA repair
Dpb11
Electrophoresis, Gel, Pulsed-Field
EMBO13
Immunoprecipitation
Models, Biological
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Phosphatase
Protein Engineering - methods
Protein Structure, Tertiary
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction - physiology
Slx4
Yeasts
title Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dampening%20DNA%20damage%20checkpoint%20signalling%20via%20coordinated%20BRCT%20domain%20interactions&rft.jtitle=The%20EMBO%20journal&rft.au=Cussiol,%20Jos%C3%A9%20R&rft.date=2015-06-12&rft.volume=34&rft.issue=12&rft.spage=1704&rft.epage=1717&rft.pages=1704-1717&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201490834&rft_dat=%3Cproquest_C6C%3E3713545011%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687801959&rft_id=info:pmid/25896509&rfr_iscdi=true