trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A

The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2015-03, Vol.54 (13), p.3978-3982
Hauptverfasser: Fuchs, Michael, Fürstner, Alois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3982
container_issue 13
container_start_page 3978
container_title Angewandte Chemie International Edition
container_volume 54
creator Fuchs, Michael
Fürstner, Alois
description The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne. The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable.
doi_str_mv 10.1002/anie.201411618
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4471581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664441435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS1ERUvhyhH5yGXDjtceezkgpVFpK0UBqVQcLa_X2xocO6w3tLlx4Y_yS9iQNionTh5rvvfsmUfIKygnUJbsrYneTVgJHABBPSFHIBgUlZTV07HmVVVIJeCQPM_568grVeIzcsgEChBQH5GroTcxF-ebtk_XLprBp_iOTler4O3fCx0SNXSWovXZURNbemlNME1w9HIThxuXfaapoye961xoffz989f0BTnoTMju5f15TK4-nH6enRfzj2cXs-m8sAJRFW0pDDYKEdCyDlnTMokKG8m44Y3kKBsuOiZr5upaSjCWsw5s3TjLFRqojsn7ne9q3Sxda10cxwl61ful6Tc6Ga__7UR_o6_TD825BKG2Bm_uDfr0fe3yoJc-WxeCiS6tswZEzvm4RzGikx1q-5TzOO3-GSj1Ngu9zULvsxgFrx9_bo8_LH8E6h1w64Pb_MdOTxcXp4_Ni53W58Hd7bWm_6ZRVlLoL4szXbGTheKf5hqrP5h2pjc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664441435</pqid></control><display><type>article</type><title>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fuchs, Michael ; Fürstner, Alois</creator><creatorcontrib>Fuchs, Michael ; Fürstner, Alois</creatorcontrib><description>The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne. The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable.</description><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201411618</identifier><identifier>PMID: 25651519</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkenes - chemistry ; alkyne metathesis ; Brefeldin A - chemical synthesis ; Catalysis ; Communications ; Cyclization ; Hydrogenation ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Conformation ; Molybdenum - chemistry ; natural products ; Oxidation-Reduction ; ruthenium ; Ruthenium Compounds - chemistry ; total synthesis</subject><ispartof>Angewandte Chemie International Edition, 2015-03, Vol.54 (13), p.3978-3982</ispartof><rights>2015 The Authors. Published by Wiley‐VCH Verlag GmbH &amp; Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</citedby><cites>FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201411618$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201411618$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25651519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuchs, Michael</creatorcontrib><creatorcontrib>Fürstner, Alois</creatorcontrib><title>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne. The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable.</description><subject>Alkenes - chemistry</subject><subject>alkyne metathesis</subject><subject>Brefeldin A - chemical synthesis</subject><subject>Catalysis</subject><subject>Communications</subject><subject>Cyclization</subject><subject>Hydrogenation</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molybdenum - chemistry</subject><subject>natural products</subject><subject>Oxidation-Reduction</subject><subject>ruthenium</subject><subject>Ruthenium Compounds - chemistry</subject><subject>total synthesis</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQhS1ERUvhyhH5yGXDjtceezkgpVFpK0UBqVQcLa_X2xocO6w3tLlx4Y_yS9iQNionTh5rvvfsmUfIKygnUJbsrYneTVgJHABBPSFHIBgUlZTV07HmVVVIJeCQPM_568grVeIzcsgEChBQH5GroTcxF-ebtk_XLprBp_iOTler4O3fCx0SNXSWovXZURNbemlNME1w9HIThxuXfaapoye961xoffz989f0BTnoTMju5f15TK4-nH6enRfzj2cXs-m8sAJRFW0pDDYKEdCyDlnTMokKG8m44Y3kKBsuOiZr5upaSjCWsw5s3TjLFRqojsn7ne9q3Sxda10cxwl61ful6Tc6Ga__7UR_o6_TD825BKG2Bm_uDfr0fe3yoJc-WxeCiS6tswZEzvm4RzGikx1q-5TzOO3-GSj1Ngu9zULvsxgFrx9_bo8_LH8E6h1w64Pb_MdOTxcXp4_Ni53W58Hd7bWm_6ZRVlLoL4szXbGTheKf5hqrP5h2pjc</recordid><startdate>20150323</startdate><enddate>20150323</enddate><creator>Fuchs, Michael</creator><creator>Fürstner, Alois</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150323</creationdate><title>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</title><author>Fuchs, Michael ; Fürstner, Alois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alkenes - chemistry</topic><topic>alkyne metathesis</topic><topic>Brefeldin A - chemical synthesis</topic><topic>Catalysis</topic><topic>Communications</topic><topic>Cyclization</topic><topic>Hydrogenation</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molybdenum - chemistry</topic><topic>natural products</topic><topic>Oxidation-Reduction</topic><topic>ruthenium</topic><topic>Ruthenium Compounds - chemistry</topic><topic>total synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Michael</creatorcontrib><creatorcontrib>Fürstner, Alois</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Michael</au><au>Fürstner, Alois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-03-23</date><risdate>2015</risdate><volume>54</volume><issue>13</issue><spage>3978</spage><epage>3982</epage><pages>3978-3982</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne. The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25651519</pmid><doi>10.1002/anie.201411618</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2015-03, Vol.54 (13), p.3978-3982
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4471581
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alkenes - chemistry
alkyne metathesis
Brefeldin A - chemical synthesis
Catalysis
Communications
Cyclization
Hydrogenation
Magnetic Resonance Spectroscopy
Models, Molecular
Molecular Conformation
Molybdenum - chemistry
natural products
Oxidation-Reduction
ruthenium
Ruthenium Compounds - chemistry
total synthesis
title trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=trans-Hydrogenation:%20Application%20to%20a%20Concise%20and%20Scalable%20Synthesis%20of%20Brefeldin%E2%80%85A&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fuchs,%20Michael&rft.date=2015-03-23&rft.volume=54&rft.issue=13&rft.spage=3978&rft.epage=3982&rft.pages=3978-3982&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201411618&rft_dat=%3Cproquest_pubme%3E1664441435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664441435&rft_id=info:pmid/25651519&rfr_iscdi=true