trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A
The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the fir...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2015-03, Vol.54 (13), p.3978-3982 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3982 |
---|---|
container_issue | 13 |
container_start_page | 3978 |
container_title | Angewandte Chemie International Edition |
container_volume | 54 |
creator | Fuchs, Michael Fürstner, Alois |
description | The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne.
The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable. |
doi_str_mv | 10.1002/anie.201411618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4471581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664441435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS1ERUvhyhH5yGXDjtceezkgpVFpK0UBqVQcLa_X2xocO6w3tLlx4Y_yS9iQNionTh5rvvfsmUfIKygnUJbsrYneTVgJHABBPSFHIBgUlZTV07HmVVVIJeCQPM_568grVeIzcsgEChBQH5GroTcxF-ebtk_XLprBp_iOTler4O3fCx0SNXSWovXZURNbemlNME1w9HIThxuXfaapoye961xoffz989f0BTnoTMju5f15TK4-nH6enRfzj2cXs-m8sAJRFW0pDDYKEdCyDlnTMokKG8m44Y3kKBsuOiZr5upaSjCWsw5s3TjLFRqojsn7ne9q3Sxda10cxwl61ful6Tc6Ga__7UR_o6_TD825BKG2Bm_uDfr0fe3yoJc-WxeCiS6tswZEzvm4RzGikx1q-5TzOO3-GSj1Ngu9zULvsxgFrx9_bo8_LH8E6h1w64Pb_MdOTxcXp4_Ni53W58Hd7bWm_6ZRVlLoL4szXbGTheKf5hqrP5h2pjc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664441435</pqid></control><display><type>article</type><title>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fuchs, Michael ; Fürstner, Alois</creator><creatorcontrib>Fuchs, Michael ; Fürstner, Alois</creatorcontrib><description>The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne.
The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable.</description><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201411618</identifier><identifier>PMID: 25651519</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkenes - chemistry ; alkyne metathesis ; Brefeldin A - chemical synthesis ; Catalysis ; Communications ; Cyclization ; Hydrogenation ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Conformation ; Molybdenum - chemistry ; natural products ; Oxidation-Reduction ; ruthenium ; Ruthenium Compounds - chemistry ; total synthesis</subject><ispartof>Angewandte Chemie International Edition, 2015-03, Vol.54 (13), p.3978-3982</ispartof><rights>2015 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</citedby><cites>FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201411618$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201411618$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25651519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuchs, Michael</creatorcontrib><creatorcontrib>Fürstner, Alois</creatorcontrib><title>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne.
The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable.</description><subject>Alkenes - chemistry</subject><subject>alkyne metathesis</subject><subject>Brefeldin A - chemical synthesis</subject><subject>Catalysis</subject><subject>Communications</subject><subject>Cyclization</subject><subject>Hydrogenation</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molybdenum - chemistry</subject><subject>natural products</subject><subject>Oxidation-Reduction</subject><subject>ruthenium</subject><subject>Ruthenium Compounds - chemistry</subject><subject>total synthesis</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQhS1ERUvhyhH5yGXDjtceezkgpVFpK0UBqVQcLa_X2xocO6w3tLlx4Y_yS9iQNionTh5rvvfsmUfIKygnUJbsrYneTVgJHABBPSFHIBgUlZTV07HmVVVIJeCQPM_568grVeIzcsgEChBQH5GroTcxF-ebtk_XLprBp_iOTler4O3fCx0SNXSWovXZURNbemlNME1w9HIThxuXfaapoye961xoffz989f0BTnoTMju5f15TK4-nH6enRfzj2cXs-m8sAJRFW0pDDYKEdCyDlnTMokKG8m44Y3kKBsuOiZr5upaSjCWsw5s3TjLFRqojsn7ne9q3Sxda10cxwl61ful6Tc6Ga__7UR_o6_TD825BKG2Bm_uDfr0fe3yoJc-WxeCiS6tswZEzvm4RzGikx1q-5TzOO3-GSj1Ngu9zULvsxgFrx9_bo8_LH8E6h1w64Pb_MdOTxcXp4_Ni53W58Hd7bWm_6ZRVlLoL4szXbGTheKf5hqrP5h2pjc</recordid><startdate>20150323</startdate><enddate>20150323</enddate><creator>Fuchs, Michael</creator><creator>Fürstner, Alois</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150323</creationdate><title>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</title><author>Fuchs, Michael ; Fürstner, Alois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5668-d05a6b86616c2f62bd27686b724a4b7467b45f2792e99771ac42f1c9bec486a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alkenes - chemistry</topic><topic>alkyne metathesis</topic><topic>Brefeldin A - chemical synthesis</topic><topic>Catalysis</topic><topic>Communications</topic><topic>Cyclization</topic><topic>Hydrogenation</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molybdenum - chemistry</topic><topic>natural products</topic><topic>Oxidation-Reduction</topic><topic>ruthenium</topic><topic>Ruthenium Compounds - chemistry</topic><topic>total synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Michael</creatorcontrib><creatorcontrib>Fürstner, Alois</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Michael</au><au>Fürstner, Alois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-03-23</date><risdate>2015</risdate><volume>54</volume><issue>13</issue><spage>3978</spage><epage>3982</epage><pages>3978-3982</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>The important biochemical probe molecule brefeldin A (1) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne.
The focal point: The recently disclosed ruthenium‐catalyzed trans‐hydrogenation of internal alkynes to E‐alkenes is noteworthy for its unorthodox stereochemical course, as well as its compatibility with other reducible or sensitive sites. This favorable profile allowed this emerging methodology to be implemented in a concise total synthesis of brefeldin A at a stage at which a conventional Birch‐type trans‐reduction would no longer be applicable.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25651519</pmid><doi>10.1002/anie.201411618</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2015-03, Vol.54 (13), p.3978-3982 |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4471581 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alkenes - chemistry alkyne metathesis Brefeldin A - chemical synthesis Catalysis Communications Cyclization Hydrogenation Magnetic Resonance Spectroscopy Models, Molecular Molecular Conformation Molybdenum - chemistry natural products Oxidation-Reduction ruthenium Ruthenium Compounds - chemistry total synthesis |
title | trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=trans-Hydrogenation:%20Application%20to%20a%20Concise%20and%20Scalable%20Synthesis%20of%20Brefeldin%E2%80%85A&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fuchs,%20Michael&rft.date=2015-03-23&rft.volume=54&rft.issue=13&rft.spage=3978&rft.epage=3982&rft.pages=3978-3982&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201411618&rft_dat=%3Cproquest_pubme%3E1664441435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664441435&rft_id=info:pmid/25651519&rfr_iscdi=true |