Responsive DNA-Based Hydrogels and Their Applications

The term hydrogel describes a type of soft and wet material formed by cross‐linked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the chemical properties of their constituent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2013-08, Vol.34 (16), p.1271-1283
Hauptverfasser: Xiong, Xiangling, Wu, Cuichen, Zhou, Cuisong, Zhu, Guizhi, Chen, Zhuo, Tan, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The term hydrogel describes a type of soft and wet material formed by cross‐linked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the chemical properties of their constituent polymer(s). However, a group of hydrogels, called “smart hydrogels,” changes properties in response to environmental changes or external stimuli. Recently, DNA or DNA‐inspired responsive hydrogels have attracted considerable attention in construction of smart hydrogels because of the intrinsic advantages of DNA. As a biological polymer, DNA is hydrophilic, biocompatible, and highly programmable by Watson‐Crick base pairing. DNA can form a hydrogel by itself under certain conditions, and it can also be incorporated into synthetic polymers to form DNA‐hybrid hydrogels. Functional DNAs, such as aptamers and DNAzymes, provide additional molecular recognition capabilities and versatility. In this Review, DNA‐based hydrogels are discussed in terms of their stimulus response, as well as their applications. DNA as a type of biopolymer has attracted considerable attention in the construction of smart hydrogels. In addition to its intrinsic advantages, DNA can form functional structures that provide additional molecular recognition capabilities and versatility. This review discusses recent progress in DNA‐based hydrogels in terms of their stimulus response, as well as their applications.
ISSN:1022-1336
1521-3927
DOI:10.1002/marc.201300411