Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains

Background Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammation research 2015-07, Vol.64 (7), p.471-486
Hauptverfasser: Cabanski, Maciej, Fields, Brett, Boue, Stephanie, Boukharov, Natalia, DeLeon, Hector, Dror, Natalie, Geertz, Marcel, Guedj, Emmanuel, Iskandar, Anita, Kogel, Ulrike, Merg, Celine, Peck, Michael J., Poussin, Carine, Schlage, Walter K., Talikka, Marja, Ivanov, Nikolai V., Hoeng, Julia, Peitsch, Manuel C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 7
container_start_page 471
container_title Inflammation research
container_volume 64
creator Cabanski, Maciej
Fields, Brett
Boue, Stephanie
Boukharov, Natalia
DeLeon, Hector
Dror, Natalie
Geertz, Marcel
Guedj, Emmanuel
Iskandar, Anita
Kogel, Ulrike
Merg, Celine
Peck, Michael J.
Poussin, Carine
Schlage, Walter K.
Talikka, Marja
Ivanov, Nikolai V.
Hoeng, Julia
Peitsch, Manuel C.
description Background Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). Objective In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. Methods The lung transcriptomes of five mouse models (C57BL/6, ApoE −/− , A/J, CD1, and Nrf2 −/− ) were analyzed following 5–7 months of CS exposure. Results We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1. Conclusion These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.
doi_str_mv 10.1007/s00011-015-0820-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4464601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701485959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</originalsourceid><addsrcrecordid>eNp1UsuKFTEQbURxHvoBbiTgxk1rHv1IbwQZdBQG3IzgLuQm1fdmzKNN0lfmy_w963LHYRRcpUidc-oUdZrmBaNvGKXj20IpZaylrG-p5LTlj5pT1mExUfntMdaUi1ZIQU-as1JuEC255E-bE95PA5diPG1-XWcdi8luqS5F7cmS0-y8i1uioyVV5y1UsIfvCik4U0iGPWhfiEkhpEhC8mBWrzMxOx23UIguJRmnD7Sfru6IcVudoVYgJaTv0LpoV4NNv-IUCMvutkDQxKKuT0uAWImLZHZ7JKzFAFrbeMBBa8GfmrWL5VnzZEYT8PzuPW--fvxwffGpvfpy-fni_VVr-lHU1goAA5vOTrzjQnRy4HwetJAD8J5xTQV0k-3NbMbNaACGoTdWCjtaOQkujDhv3h11l3UTwBo0l7VXS3ZB51uVtFN_d6LbqW3aq64buoEyFHh9J5DTjxVKVcHhTt7rCLiQYiNlneynfkLoq3-gN2nNeBREDdPEmRj6HlHsiDI5lZJhvjfDqDrEQh1joTAW6hALxZHz8uEW94w_OUAAPwIKtvCI-cHo_6r-Bqq3ygs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699213655</pqid></control><display><type>article</type><title>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Cabanski, Maciej ; Fields, Brett ; Boue, Stephanie ; Boukharov, Natalia ; DeLeon, Hector ; Dror, Natalie ; Geertz, Marcel ; Guedj, Emmanuel ; Iskandar, Anita ; Kogel, Ulrike ; Merg, Celine ; Peck, Michael J. ; Poussin, Carine ; Schlage, Walter K. ; Talikka, Marja ; Ivanov, Nikolai V. ; Hoeng, Julia ; Peitsch, Manuel C.</creator><creatorcontrib>Cabanski, Maciej ; Fields, Brett ; Boue, Stephanie ; Boukharov, Natalia ; DeLeon, Hector ; Dror, Natalie ; Geertz, Marcel ; Guedj, Emmanuel ; Iskandar, Anita ; Kogel, Ulrike ; Merg, Celine ; Peck, Michael J. ; Poussin, Carine ; Schlage, Walter K. ; Talikka, Marja ; Ivanov, Nikolai V. ; Hoeng, Julia ; Peitsch, Manuel C.</creatorcontrib><description>Background Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). Objective In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. Methods The lung transcriptomes of five mouse models (C57BL/6, ApoE −/− , A/J, CD1, and Nrf2 −/− ) were analyzed following 5–7 months of CS exposure. Results We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1. Conclusion These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.</description><identifier>ISSN: 1023-3830</identifier><identifier>EISSN: 1420-908X</identifier><identifier>DOI: 10.1007/s00011-015-0820-2</identifier><identifier>PMID: 25962837</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Allergology ; Animals ; Apolipoproteins E - genetics ; Biomedical and Life Sciences ; Biomedicine ; Bronchoalveolar Lavage Fluid - chemistry ; Bronchoalveolar Lavage Fluid - cytology ; Causality ; Dermatology ; Gene Expression Profiling ; Immunology ; Inhalation Exposure ; Lung - pathology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CFTR ; Mice, Knockout ; Neurology ; Nicotiana ; Original Research Paper ; Pharmacology/Toxicology ; Polymerase Chain Reaction ; Proteomics ; Pulmonary Emphysema - chemically induced ; Pulmonary Emphysema - genetics ; Pulmonary Emphysema - pathology ; Rheumatology ; Smoke ; Smoking ; Species Specificity</subject><ispartof>Inflammation research, 2015-07, Vol.64 (7), p.471-486</ispartof><rights>The Author(s) 2015</rights><rights>Springer Basel 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</citedby><cites>FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00011-015-0820-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00011-015-0820-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27913,27914,41477,42546,51308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25962837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabanski, Maciej</creatorcontrib><creatorcontrib>Fields, Brett</creatorcontrib><creatorcontrib>Boue, Stephanie</creatorcontrib><creatorcontrib>Boukharov, Natalia</creatorcontrib><creatorcontrib>DeLeon, Hector</creatorcontrib><creatorcontrib>Dror, Natalie</creatorcontrib><creatorcontrib>Geertz, Marcel</creatorcontrib><creatorcontrib>Guedj, Emmanuel</creatorcontrib><creatorcontrib>Iskandar, Anita</creatorcontrib><creatorcontrib>Kogel, Ulrike</creatorcontrib><creatorcontrib>Merg, Celine</creatorcontrib><creatorcontrib>Peck, Michael J.</creatorcontrib><creatorcontrib>Poussin, Carine</creatorcontrib><creatorcontrib>Schlage, Walter K.</creatorcontrib><creatorcontrib>Talikka, Marja</creatorcontrib><creatorcontrib>Ivanov, Nikolai V.</creatorcontrib><creatorcontrib>Hoeng, Julia</creatorcontrib><creatorcontrib>Peitsch, Manuel C.</creatorcontrib><title>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</title><title>Inflammation research</title><addtitle>Inflamm. Res</addtitle><addtitle>Inflamm Res</addtitle><description>Background Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). Objective In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. Methods The lung transcriptomes of five mouse models (C57BL/6, ApoE −/− , A/J, CD1, and Nrf2 −/− ) were analyzed following 5–7 months of CS exposure. Results We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1. Conclusion These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.</description><subject>Allergology</subject><subject>Animals</subject><subject>Apolipoproteins E - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bronchoalveolar Lavage Fluid - chemistry</subject><subject>Bronchoalveolar Lavage Fluid - cytology</subject><subject>Causality</subject><subject>Dermatology</subject><subject>Gene Expression Profiling</subject><subject>Immunology</subject><subject>Inhalation Exposure</subject><subject>Lung - pathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred CFTR</subject><subject>Mice, Knockout</subject><subject>Neurology</subject><subject>Nicotiana</subject><subject>Original Research Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Polymerase Chain Reaction</subject><subject>Proteomics</subject><subject>Pulmonary Emphysema - chemically induced</subject><subject>Pulmonary Emphysema - genetics</subject><subject>Pulmonary Emphysema - pathology</subject><subject>Rheumatology</subject><subject>Smoke</subject><subject>Smoking</subject><subject>Species Specificity</subject><issn>1023-3830</issn><issn>1420-908X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1UsuKFTEQbURxHvoBbiTgxk1rHv1IbwQZdBQG3IzgLuQm1fdmzKNN0lfmy_w963LHYRRcpUidc-oUdZrmBaNvGKXj20IpZaylrG-p5LTlj5pT1mExUfntMdaUi1ZIQU-as1JuEC255E-bE95PA5diPG1-XWcdi8luqS5F7cmS0-y8i1uioyVV5y1UsIfvCik4U0iGPWhfiEkhpEhC8mBWrzMxOx23UIguJRmnD7Sfru6IcVudoVYgJaTv0LpoV4NNv-IUCMvutkDQxKKuT0uAWImLZHZ7JKzFAFrbeMBBa8GfmrWL5VnzZEYT8PzuPW--fvxwffGpvfpy-fni_VVr-lHU1goAA5vOTrzjQnRy4HwetJAD8J5xTQV0k-3NbMbNaACGoTdWCjtaOQkujDhv3h11l3UTwBo0l7VXS3ZB51uVtFN_d6LbqW3aq64buoEyFHh9J5DTjxVKVcHhTt7rCLiQYiNlneynfkLoq3-gN2nNeBREDdPEmRj6HlHsiDI5lZJhvjfDqDrEQh1joTAW6hALxZHz8uEW94w_OUAAPwIKtvCI-cHo_6r-Bqq3ygs</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Cabanski, Maciej</creator><creator>Fields, Brett</creator><creator>Boue, Stephanie</creator><creator>Boukharov, Natalia</creator><creator>DeLeon, Hector</creator><creator>Dror, Natalie</creator><creator>Geertz, Marcel</creator><creator>Guedj, Emmanuel</creator><creator>Iskandar, Anita</creator><creator>Kogel, Ulrike</creator><creator>Merg, Celine</creator><creator>Peck, Michael J.</creator><creator>Poussin, Carine</creator><creator>Schlage, Walter K.</creator><creator>Talikka, Marja</creator><creator>Ivanov, Nikolai V.</creator><creator>Hoeng, Julia</creator><creator>Peitsch, Manuel C.</creator><general>Springer Basel</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</title><author>Cabanski, Maciej ; Fields, Brett ; Boue, Stephanie ; Boukharov, Natalia ; DeLeon, Hector ; Dror, Natalie ; Geertz, Marcel ; Guedj, Emmanuel ; Iskandar, Anita ; Kogel, Ulrike ; Merg, Celine ; Peck, Michael J. ; Poussin, Carine ; Schlage, Walter K. ; Talikka, Marja ; Ivanov, Nikolai V. ; Hoeng, Julia ; Peitsch, Manuel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergology</topic><topic>Animals</topic><topic>Apolipoproteins E - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bronchoalveolar Lavage Fluid - chemistry</topic><topic>Bronchoalveolar Lavage Fluid - cytology</topic><topic>Causality</topic><topic>Dermatology</topic><topic>Gene Expression Profiling</topic><topic>Immunology</topic><topic>Inhalation Exposure</topic><topic>Lung - pathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred CFTR</topic><topic>Mice, Knockout</topic><topic>Neurology</topic><topic>Nicotiana</topic><topic>Original Research Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Polymerase Chain Reaction</topic><topic>Proteomics</topic><topic>Pulmonary Emphysema - chemically induced</topic><topic>Pulmonary Emphysema - genetics</topic><topic>Pulmonary Emphysema - pathology</topic><topic>Rheumatology</topic><topic>Smoke</topic><topic>Smoking</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabanski, Maciej</creatorcontrib><creatorcontrib>Fields, Brett</creatorcontrib><creatorcontrib>Boue, Stephanie</creatorcontrib><creatorcontrib>Boukharov, Natalia</creatorcontrib><creatorcontrib>DeLeon, Hector</creatorcontrib><creatorcontrib>Dror, Natalie</creatorcontrib><creatorcontrib>Geertz, Marcel</creatorcontrib><creatorcontrib>Guedj, Emmanuel</creatorcontrib><creatorcontrib>Iskandar, Anita</creatorcontrib><creatorcontrib>Kogel, Ulrike</creatorcontrib><creatorcontrib>Merg, Celine</creatorcontrib><creatorcontrib>Peck, Michael J.</creatorcontrib><creatorcontrib>Poussin, Carine</creatorcontrib><creatorcontrib>Schlage, Walter K.</creatorcontrib><creatorcontrib>Talikka, Marja</creatorcontrib><creatorcontrib>Ivanov, Nikolai V.</creatorcontrib><creatorcontrib>Hoeng, Julia</creatorcontrib><creatorcontrib>Peitsch, Manuel C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inflammation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabanski, Maciej</au><au>Fields, Brett</au><au>Boue, Stephanie</au><au>Boukharov, Natalia</au><au>DeLeon, Hector</au><au>Dror, Natalie</au><au>Geertz, Marcel</au><au>Guedj, Emmanuel</au><au>Iskandar, Anita</au><au>Kogel, Ulrike</au><au>Merg, Celine</au><au>Peck, Michael J.</au><au>Poussin, Carine</au><au>Schlage, Walter K.</au><au>Talikka, Marja</au><au>Ivanov, Nikolai V.</au><au>Hoeng, Julia</au><au>Peitsch, Manuel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</atitle><jtitle>Inflammation research</jtitle><stitle>Inflamm. Res</stitle><addtitle>Inflamm Res</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>64</volume><issue>7</issue><spage>471</spage><epage>486</epage><pages>471-486</pages><issn>1023-3830</issn><eissn>1420-908X</eissn><abstract>Background Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). Objective In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. Methods The lung transcriptomes of five mouse models (C57BL/6, ApoE −/− , A/J, CD1, and Nrf2 −/− ) were analyzed following 5–7 months of CS exposure. Results We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1. Conclusion These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.</abstract><cop>Basel</cop><pub>Springer Basel</pub><pmid>25962837</pmid><doi>10.1007/s00011-015-0820-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1023-3830
ispartof Inflammation research, 2015-07, Vol.64 (7), p.471-486
issn 1023-3830
1420-908X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4464601
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Allergology
Animals
Apolipoproteins E - genetics
Biomedical and Life Sciences
Biomedicine
Bronchoalveolar Lavage Fluid - chemistry
Bronchoalveolar Lavage Fluid - cytology
Causality
Dermatology
Gene Expression Profiling
Immunology
Inhalation Exposure
Lung - pathology
Mice
Mice, Inbred C57BL
Mice, Inbred CFTR
Mice, Knockout
Neurology
Nicotiana
Original Research Paper
Pharmacology/Toxicology
Polymerase Chain Reaction
Proteomics
Pulmonary Emphysema - chemically induced
Pulmonary Emphysema - genetics
Pulmonary Emphysema - pathology
Rheumatology
Smoke
Smoking
Species Specificity
title Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20and%20targeted%20proteomics%20reveals%20common%20molecular%20changes%20associated%20with%20cigarette%20smoke-induced%20lung%20emphysema%20development%20in%20five%20susceptible%20mouse%20strains&rft.jtitle=Inflammation%20research&rft.au=Cabanski,%20Maciej&rft.date=2015-07-01&rft.volume=64&rft.issue=7&rft.spage=471&rft.epage=486&rft.pages=471-486&rft.issn=1023-3830&rft.eissn=1420-908X&rft_id=info:doi/10.1007/s00011-015-0820-2&rft_dat=%3Cproquest_pubme%3E1701485959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699213655&rft_id=info:pmid/25962837&rfr_iscdi=true