Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains
Background Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal...
Gespeichert in:
Veröffentlicht in: | Inflammation research 2015-07, Vol.64 (7), p.471-486 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 7 |
container_start_page | 471 |
container_title | Inflammation research |
container_volume | 64 |
creator | Cabanski, Maciej Fields, Brett Boue, Stephanie Boukharov, Natalia DeLeon, Hector Dror, Natalie Geertz, Marcel Guedj, Emmanuel Iskandar, Anita Kogel, Ulrike Merg, Celine Peck, Michael J. Poussin, Carine Schlage, Walter K. Talikka, Marja Ivanov, Nikolai V. Hoeng, Julia Peitsch, Manuel C. |
description | Background
Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR).
Objective
In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice.
Methods
The lung transcriptomes of five mouse models (C57BL/6, ApoE
−/−
, A/J, CD1, and Nrf2
−/−
) were analyzed following 5–7 months of CS exposure.
Results
We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1.
Conclusion
These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease. |
doi_str_mv | 10.1007/s00011-015-0820-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4464601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701485959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</originalsourceid><addsrcrecordid>eNp1UsuKFTEQbURxHvoBbiTgxk1rHv1IbwQZdBQG3IzgLuQm1fdmzKNN0lfmy_w963LHYRRcpUidc-oUdZrmBaNvGKXj20IpZaylrG-p5LTlj5pT1mExUfntMdaUi1ZIQU-as1JuEC255E-bE95PA5diPG1-XWcdi8luqS5F7cmS0-y8i1uioyVV5y1UsIfvCik4U0iGPWhfiEkhpEhC8mBWrzMxOx23UIguJRmnD7Sfru6IcVudoVYgJaTv0LpoV4NNv-IUCMvutkDQxKKuT0uAWImLZHZ7JKzFAFrbeMBBa8GfmrWL5VnzZEYT8PzuPW--fvxwffGpvfpy-fni_VVr-lHU1goAA5vOTrzjQnRy4HwetJAD8J5xTQV0k-3NbMbNaACGoTdWCjtaOQkujDhv3h11l3UTwBo0l7VXS3ZB51uVtFN_d6LbqW3aq64buoEyFHh9J5DTjxVKVcHhTt7rCLiQYiNlneynfkLoq3-gN2nNeBREDdPEmRj6HlHsiDI5lZJhvjfDqDrEQh1joTAW6hALxZHz8uEW94w_OUAAPwIKtvCI-cHo_6r-Bqq3ygs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699213655</pqid></control><display><type>article</type><title>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Cabanski, Maciej ; Fields, Brett ; Boue, Stephanie ; Boukharov, Natalia ; DeLeon, Hector ; Dror, Natalie ; Geertz, Marcel ; Guedj, Emmanuel ; Iskandar, Anita ; Kogel, Ulrike ; Merg, Celine ; Peck, Michael J. ; Poussin, Carine ; Schlage, Walter K. ; Talikka, Marja ; Ivanov, Nikolai V. ; Hoeng, Julia ; Peitsch, Manuel C.</creator><creatorcontrib>Cabanski, Maciej ; Fields, Brett ; Boue, Stephanie ; Boukharov, Natalia ; DeLeon, Hector ; Dror, Natalie ; Geertz, Marcel ; Guedj, Emmanuel ; Iskandar, Anita ; Kogel, Ulrike ; Merg, Celine ; Peck, Michael J. ; Poussin, Carine ; Schlage, Walter K. ; Talikka, Marja ; Ivanov, Nikolai V. ; Hoeng, Julia ; Peitsch, Manuel C.</creatorcontrib><description>Background
Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR).
Objective
In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice.
Methods
The lung transcriptomes of five mouse models (C57BL/6, ApoE
−/−
, A/J, CD1, and Nrf2
−/−
) were analyzed following 5–7 months of CS exposure.
Results
We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1.
Conclusion
These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.</description><identifier>ISSN: 1023-3830</identifier><identifier>EISSN: 1420-908X</identifier><identifier>DOI: 10.1007/s00011-015-0820-2</identifier><identifier>PMID: 25962837</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Allergology ; Animals ; Apolipoproteins E - genetics ; Biomedical and Life Sciences ; Biomedicine ; Bronchoalveolar Lavage Fluid - chemistry ; Bronchoalveolar Lavage Fluid - cytology ; Causality ; Dermatology ; Gene Expression Profiling ; Immunology ; Inhalation Exposure ; Lung - pathology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CFTR ; Mice, Knockout ; Neurology ; Nicotiana ; Original Research Paper ; Pharmacology/Toxicology ; Polymerase Chain Reaction ; Proteomics ; Pulmonary Emphysema - chemically induced ; Pulmonary Emphysema - genetics ; Pulmonary Emphysema - pathology ; Rheumatology ; Smoke ; Smoking ; Species Specificity</subject><ispartof>Inflammation research, 2015-07, Vol.64 (7), p.471-486</ispartof><rights>The Author(s) 2015</rights><rights>Springer Basel 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</citedby><cites>FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00011-015-0820-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00011-015-0820-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27913,27914,41477,42546,51308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25962837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabanski, Maciej</creatorcontrib><creatorcontrib>Fields, Brett</creatorcontrib><creatorcontrib>Boue, Stephanie</creatorcontrib><creatorcontrib>Boukharov, Natalia</creatorcontrib><creatorcontrib>DeLeon, Hector</creatorcontrib><creatorcontrib>Dror, Natalie</creatorcontrib><creatorcontrib>Geertz, Marcel</creatorcontrib><creatorcontrib>Guedj, Emmanuel</creatorcontrib><creatorcontrib>Iskandar, Anita</creatorcontrib><creatorcontrib>Kogel, Ulrike</creatorcontrib><creatorcontrib>Merg, Celine</creatorcontrib><creatorcontrib>Peck, Michael J.</creatorcontrib><creatorcontrib>Poussin, Carine</creatorcontrib><creatorcontrib>Schlage, Walter K.</creatorcontrib><creatorcontrib>Talikka, Marja</creatorcontrib><creatorcontrib>Ivanov, Nikolai V.</creatorcontrib><creatorcontrib>Hoeng, Julia</creatorcontrib><creatorcontrib>Peitsch, Manuel C.</creatorcontrib><title>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</title><title>Inflammation research</title><addtitle>Inflamm. Res</addtitle><addtitle>Inflamm Res</addtitle><description>Background
Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR).
Objective
In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice.
Methods
The lung transcriptomes of five mouse models (C57BL/6, ApoE
−/−
, A/J, CD1, and Nrf2
−/−
) were analyzed following 5–7 months of CS exposure.
Results
We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1.
Conclusion
These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.</description><subject>Allergology</subject><subject>Animals</subject><subject>Apolipoproteins E - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bronchoalveolar Lavage Fluid - chemistry</subject><subject>Bronchoalveolar Lavage Fluid - cytology</subject><subject>Causality</subject><subject>Dermatology</subject><subject>Gene Expression Profiling</subject><subject>Immunology</subject><subject>Inhalation Exposure</subject><subject>Lung - pathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred CFTR</subject><subject>Mice, Knockout</subject><subject>Neurology</subject><subject>Nicotiana</subject><subject>Original Research Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Polymerase Chain Reaction</subject><subject>Proteomics</subject><subject>Pulmonary Emphysema - chemically induced</subject><subject>Pulmonary Emphysema - genetics</subject><subject>Pulmonary Emphysema - pathology</subject><subject>Rheumatology</subject><subject>Smoke</subject><subject>Smoking</subject><subject>Species Specificity</subject><issn>1023-3830</issn><issn>1420-908X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1UsuKFTEQbURxHvoBbiTgxk1rHv1IbwQZdBQG3IzgLuQm1fdmzKNN0lfmy_w963LHYRRcpUidc-oUdZrmBaNvGKXj20IpZaylrG-p5LTlj5pT1mExUfntMdaUi1ZIQU-as1JuEC255E-bE95PA5diPG1-XWcdi8luqS5F7cmS0-y8i1uioyVV5y1UsIfvCik4U0iGPWhfiEkhpEhC8mBWrzMxOx23UIguJRmnD7Sfru6IcVudoVYgJaTv0LpoV4NNv-IUCMvutkDQxKKuT0uAWImLZHZ7JKzFAFrbeMBBa8GfmrWL5VnzZEYT8PzuPW--fvxwffGpvfpy-fni_VVr-lHU1goAA5vOTrzjQnRy4HwetJAD8J5xTQV0k-3NbMbNaACGoTdWCjtaOQkujDhv3h11l3UTwBo0l7VXS3ZB51uVtFN_d6LbqW3aq64buoEyFHh9J5DTjxVKVcHhTt7rCLiQYiNlneynfkLoq3-gN2nNeBREDdPEmRj6HlHsiDI5lZJhvjfDqDrEQh1joTAW6hALxZHz8uEW94w_OUAAPwIKtvCI-cHo_6r-Bqq3ygs</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Cabanski, Maciej</creator><creator>Fields, Brett</creator><creator>Boue, Stephanie</creator><creator>Boukharov, Natalia</creator><creator>DeLeon, Hector</creator><creator>Dror, Natalie</creator><creator>Geertz, Marcel</creator><creator>Guedj, Emmanuel</creator><creator>Iskandar, Anita</creator><creator>Kogel, Ulrike</creator><creator>Merg, Celine</creator><creator>Peck, Michael J.</creator><creator>Poussin, Carine</creator><creator>Schlage, Walter K.</creator><creator>Talikka, Marja</creator><creator>Ivanov, Nikolai V.</creator><creator>Hoeng, Julia</creator><creator>Peitsch, Manuel C.</creator><general>Springer Basel</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</title><author>Cabanski, Maciej ; Fields, Brett ; Boue, Stephanie ; Boukharov, Natalia ; DeLeon, Hector ; Dror, Natalie ; Geertz, Marcel ; Guedj, Emmanuel ; Iskandar, Anita ; Kogel, Ulrike ; Merg, Celine ; Peck, Michael J. ; Poussin, Carine ; Schlage, Walter K. ; Talikka, Marja ; Ivanov, Nikolai V. ; Hoeng, Julia ; Peitsch, Manuel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-d3eeceb4d92423348622f6a386e2512a03e49d5cfc7b7cee665cd83d7d89323c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergology</topic><topic>Animals</topic><topic>Apolipoproteins E - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bronchoalveolar Lavage Fluid - chemistry</topic><topic>Bronchoalveolar Lavage Fluid - cytology</topic><topic>Causality</topic><topic>Dermatology</topic><topic>Gene Expression Profiling</topic><topic>Immunology</topic><topic>Inhalation Exposure</topic><topic>Lung - pathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred CFTR</topic><topic>Mice, Knockout</topic><topic>Neurology</topic><topic>Nicotiana</topic><topic>Original Research Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Polymerase Chain Reaction</topic><topic>Proteomics</topic><topic>Pulmonary Emphysema - chemically induced</topic><topic>Pulmonary Emphysema - genetics</topic><topic>Pulmonary Emphysema - pathology</topic><topic>Rheumatology</topic><topic>Smoke</topic><topic>Smoking</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabanski, Maciej</creatorcontrib><creatorcontrib>Fields, Brett</creatorcontrib><creatorcontrib>Boue, Stephanie</creatorcontrib><creatorcontrib>Boukharov, Natalia</creatorcontrib><creatorcontrib>DeLeon, Hector</creatorcontrib><creatorcontrib>Dror, Natalie</creatorcontrib><creatorcontrib>Geertz, Marcel</creatorcontrib><creatorcontrib>Guedj, Emmanuel</creatorcontrib><creatorcontrib>Iskandar, Anita</creatorcontrib><creatorcontrib>Kogel, Ulrike</creatorcontrib><creatorcontrib>Merg, Celine</creatorcontrib><creatorcontrib>Peck, Michael J.</creatorcontrib><creatorcontrib>Poussin, Carine</creatorcontrib><creatorcontrib>Schlage, Walter K.</creatorcontrib><creatorcontrib>Talikka, Marja</creatorcontrib><creatorcontrib>Ivanov, Nikolai V.</creatorcontrib><creatorcontrib>Hoeng, Julia</creatorcontrib><creatorcontrib>Peitsch, Manuel C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inflammation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabanski, Maciej</au><au>Fields, Brett</au><au>Boue, Stephanie</au><au>Boukharov, Natalia</au><au>DeLeon, Hector</au><au>Dror, Natalie</au><au>Geertz, Marcel</au><au>Guedj, Emmanuel</au><au>Iskandar, Anita</au><au>Kogel, Ulrike</au><au>Merg, Celine</au><au>Peck, Michael J.</au><au>Poussin, Carine</au><au>Schlage, Walter K.</au><au>Talikka, Marja</au><au>Ivanov, Nikolai V.</au><au>Hoeng, Julia</au><au>Peitsch, Manuel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains</atitle><jtitle>Inflammation research</jtitle><stitle>Inflamm. Res</stitle><addtitle>Inflamm Res</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>64</volume><issue>7</issue><spage>471</spage><epage>486</epage><pages>471-486</pages><issn>1023-3830</issn><eissn>1420-908X</eissn><abstract>Background
Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR).
Objective
In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice.
Methods
The lung transcriptomes of five mouse models (C57BL/6, ApoE
−/−
, A/J, CD1, and Nrf2
−/−
) were analyzed following 5–7 months of CS exposure.
Results
We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1.
Conclusion
These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.</abstract><cop>Basel</cop><pub>Springer Basel</pub><pmid>25962837</pmid><doi>10.1007/s00011-015-0820-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-3830 |
ispartof | Inflammation research, 2015-07, Vol.64 (7), p.471-486 |
issn | 1023-3830 1420-908X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4464601 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Allergology Animals Apolipoproteins E - genetics Biomedical and Life Sciences Biomedicine Bronchoalveolar Lavage Fluid - chemistry Bronchoalveolar Lavage Fluid - cytology Causality Dermatology Gene Expression Profiling Immunology Inhalation Exposure Lung - pathology Mice Mice, Inbred C57BL Mice, Inbred CFTR Mice, Knockout Neurology Nicotiana Original Research Paper Pharmacology/Toxicology Polymerase Chain Reaction Proteomics Pulmonary Emphysema - chemically induced Pulmonary Emphysema - genetics Pulmonary Emphysema - pathology Rheumatology Smoke Smoking Species Specificity |
title | Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20and%20targeted%20proteomics%20reveals%20common%20molecular%20changes%20associated%20with%20cigarette%20smoke-induced%20lung%20emphysema%20development%20in%20five%20susceptible%20mouse%20strains&rft.jtitle=Inflammation%20research&rft.au=Cabanski,%20Maciej&rft.date=2015-07-01&rft.volume=64&rft.issue=7&rft.spage=471&rft.epage=486&rft.pages=471-486&rft.issn=1023-3830&rft.eissn=1420-908X&rft_id=info:doi/10.1007/s00011-015-0820-2&rft_dat=%3Cproquest_pubme%3E1701485959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699213655&rft_id=info:pmid/25962837&rfr_iscdi=true |