Adaptively Tuned Iterative Low Dose CT Image Denoising

Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2015-01, Vol.2015 (2015), p.1-12
Hauptverfasser: Cobbold, Richard S. C., Beheshti, S., Paul, Narinder S., Hashemi, SayedMasoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2015
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2015
creator Cobbold, Richard S. C.
Beheshti, S.
Paul, Narinder S.
Hashemi, SayedMasoud
description Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.
doi_str_mv 10.1155/2015/638568
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4458284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1690211426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</originalsourceid><addsrcrecordid>eNqN0M1LwzAYBvAgitPpybv0KEpd3jRfvQhj82Mw8DLBW0jbZIt07Wzajf33dnSOefOUkPx43pcHoRvAjwCMDQgGNuCRZFyeoAsQVIZcgDw93PFnD116_4UxA8HgHPUIxzKOBblAfJjpVe3WJt8Gs6YwWTCpTaV3L8G03ATj0ptgNAsmSz03wdgUpfOumF-hM6tzb673Zx99vDzPRm_h9P11MhpOw5RGcR3qlEmbUGsBrLUxZCyTSSpSiCIJOAEqRCJBphjTSAhsImgBFhYDJ5QwEvXRU5e7apKlyVJT1JXO1apyS11tVamd-vtTuIWal2tFKZNE0jbgbh9Qld-N8bVaOp-aPNeFKRuvgMeYAFDCW_rQ0bQqva-MPYwBrHZNq13Tqmu61bfHmx3sb7UtuO_AwhWZ3rj_pZmWGKuPMBMxi6MfNNOOMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690211426</pqid></control><display><type>article</type><title>Adaptively Tuned Iterative Low Dose CT Image Denoising</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cobbold, Richard S. C. ; Beheshti, S. ; Paul, Narinder S. ; Hashemi, SayedMasoud</creator><contributor>Palmans, Hugo</contributor><creatorcontrib>Cobbold, Richard S. C. ; Beheshti, S. ; Paul, Narinder S. ; Hashemi, SayedMasoud ; Palmans, Hugo</creatorcontrib><description>Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2015/638568</identifier><identifier>PMID: 26089972</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computational Biology ; Humans ; Imaging, Three-Dimensional - methods ; Imaging, Three-Dimensional - statistics &amp; numerical data ; Lung - diagnostic imaging ; Models, Statistical ; Phantoms, Imaging ; Radiation Dosage ; Radiographic Image Interpretation, Computer-Assisted - methods ; Signal-To-Noise Ratio ; Tomography, X-Ray Computed - methods ; Tomography, X-Ray Computed - statistics &amp; numerical data</subject><ispartof>Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-12</ispartof><rights>Copyright © 2015 SayedMasoud Hashemi et al.</rights><rights>Copyright © 2015 SayedMasoud Hashemi et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</citedby><cites>FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26089972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Palmans, Hugo</contributor><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Beheshti, S.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><title>Adaptively Tuned Iterative Low Dose CT Image Denoising</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Imaging, Three-Dimensional - statistics &amp; numerical data</subject><subject>Lung - diagnostic imaging</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><subject>Radiation Dosage</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Signal-To-Noise Ratio</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tomography, X-Ray Computed - statistics &amp; numerical data</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0M1LwzAYBvAgitPpybv0KEpd3jRfvQhj82Mw8DLBW0jbZIt07Wzajf33dnSOefOUkPx43pcHoRvAjwCMDQgGNuCRZFyeoAsQVIZcgDw93PFnD116_4UxA8HgHPUIxzKOBblAfJjpVe3WJt8Gs6YwWTCpTaV3L8G03ATj0ptgNAsmSz03wdgUpfOumF-hM6tzb673Zx99vDzPRm_h9P11MhpOw5RGcR3qlEmbUGsBrLUxZCyTSSpSiCIJOAEqRCJBphjTSAhsImgBFhYDJ5QwEvXRU5e7apKlyVJT1JXO1apyS11tVamd-vtTuIWal2tFKZNE0jbgbh9Qld-N8bVaOp-aPNeFKRuvgMeYAFDCW_rQ0bQqva-MPYwBrHZNq13Tqmu61bfHmx3sb7UtuO_AwhWZ3rj_pZmWGKuPMBMxi6MfNNOOMQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Cobbold, Richard S. C.</creator><creator>Beheshti, S.</creator><creator>Paul, Narinder S.</creator><creator>Hashemi, SayedMasoud</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Adaptively Tuned Iterative Low Dose CT Image Denoising</title><author>Cobbold, Richard S. C. ; Beheshti, S. ; Paul, Narinder S. ; Hashemi, SayedMasoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Imaging, Three-Dimensional - statistics &amp; numerical data</topic><topic>Lung - diagnostic imaging</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><topic>Radiation Dosage</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Signal-To-Noise Ratio</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tomography, X-Ray Computed - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Beheshti, S.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobbold, Richard S. C.</au><au>Beheshti, S.</au><au>Paul, Narinder S.</au><au>Hashemi, SayedMasoud</au><au>Palmans, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively Tuned Iterative Low Dose CT Image Denoising</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>26089972</pmid><doi>10.1155/2015/638568</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-12
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4458284
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Computational Biology
Humans
Imaging, Three-Dimensional - methods
Imaging, Three-Dimensional - statistics & numerical data
Lung - diagnostic imaging
Models, Statistical
Phantoms, Imaging
Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted - methods
Signal-To-Noise Ratio
Tomography, X-Ray Computed - methods
Tomography, X-Ray Computed - statistics & numerical data
title Adaptively Tuned Iterative Low Dose CT Image Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20Tuned%20Iterative%20Low%20Dose%20CT%20Image%20Denoising&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Cobbold,%20Richard%20S.%20C.&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2015/638568&rft_dat=%3Cproquest_pubme%3E1690211426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690211426&rft_id=info:pmid/26089972&rfr_iscdi=true