Adaptively Tuned Iterative Low Dose CT Image Denoising
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regular...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2015-01, Vol.2015 (2015), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2015 |
creator | Cobbold, Richard S. C. Beheshti, S. Paul, Narinder S. Hashemi, SayedMasoud |
description | Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. |
doi_str_mv | 10.1155/2015/638568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4458284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1690211426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</originalsourceid><addsrcrecordid>eNqN0M1LwzAYBvAgitPpybv0KEpd3jRfvQhj82Mw8DLBW0jbZIt07Wzajf33dnSOefOUkPx43pcHoRvAjwCMDQgGNuCRZFyeoAsQVIZcgDw93PFnD116_4UxA8HgHPUIxzKOBblAfJjpVe3WJt8Gs6YwWTCpTaV3L8G03ATj0ptgNAsmSz03wdgUpfOumF-hM6tzb673Zx99vDzPRm_h9P11MhpOw5RGcR3qlEmbUGsBrLUxZCyTSSpSiCIJOAEqRCJBphjTSAhsImgBFhYDJ5QwEvXRU5e7apKlyVJT1JXO1apyS11tVamd-vtTuIWal2tFKZNE0jbgbh9Qld-N8bVaOp-aPNeFKRuvgMeYAFDCW_rQ0bQqva-MPYwBrHZNq13Tqmu61bfHmx3sb7UtuO_AwhWZ3rj_pZmWGKuPMBMxi6MfNNOOMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690211426</pqid></control><display><type>article</type><title>Adaptively Tuned Iterative Low Dose CT Image Denoising</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cobbold, Richard S. C. ; Beheshti, S. ; Paul, Narinder S. ; Hashemi, SayedMasoud</creator><contributor>Palmans, Hugo</contributor><creatorcontrib>Cobbold, Richard S. C. ; Beheshti, S. ; Paul, Narinder S. ; Hashemi, SayedMasoud ; Palmans, Hugo</creatorcontrib><description>Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2015/638568</identifier><identifier>PMID: 26089972</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computational Biology ; Humans ; Imaging, Three-Dimensional - methods ; Imaging, Three-Dimensional - statistics & numerical data ; Lung - diagnostic imaging ; Models, Statistical ; Phantoms, Imaging ; Radiation Dosage ; Radiographic Image Interpretation, Computer-Assisted - methods ; Signal-To-Noise Ratio ; Tomography, X-Ray Computed - methods ; Tomography, X-Ray Computed - statistics & numerical data</subject><ispartof>Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-12</ispartof><rights>Copyright © 2015 SayedMasoud Hashemi et al.</rights><rights>Copyright © 2015 SayedMasoud Hashemi et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</citedby><cites>FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26089972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Palmans, Hugo</contributor><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Beheshti, S.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><title>Adaptively Tuned Iterative Low Dose CT Image Denoising</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Imaging, Three-Dimensional - statistics & numerical data</subject><subject>Lung - diagnostic imaging</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><subject>Radiation Dosage</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Signal-To-Noise Ratio</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tomography, X-Ray Computed - statistics & numerical data</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0M1LwzAYBvAgitPpybv0KEpd3jRfvQhj82Mw8DLBW0jbZIt07Wzajf33dnSOefOUkPx43pcHoRvAjwCMDQgGNuCRZFyeoAsQVIZcgDw93PFnD116_4UxA8HgHPUIxzKOBblAfJjpVe3WJt8Gs6YwWTCpTaV3L8G03ATj0ptgNAsmSz03wdgUpfOumF-hM6tzb673Zx99vDzPRm_h9P11MhpOw5RGcR3qlEmbUGsBrLUxZCyTSSpSiCIJOAEqRCJBphjTSAhsImgBFhYDJ5QwEvXRU5e7apKlyVJT1JXO1apyS11tVamd-vtTuIWal2tFKZNE0jbgbh9Qld-N8bVaOp-aPNeFKRuvgMeYAFDCW_rQ0bQqva-MPYwBrHZNq13Tqmu61bfHmx3sb7UtuO_AwhWZ3rj_pZmWGKuPMBMxi6MfNNOOMQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Cobbold, Richard S. C.</creator><creator>Beheshti, S.</creator><creator>Paul, Narinder S.</creator><creator>Hashemi, SayedMasoud</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Adaptively Tuned Iterative Low Dose CT Image Denoising</title><author>Cobbold, Richard S. C. ; Beheshti, S. ; Paul, Narinder S. ; Hashemi, SayedMasoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-ac58fb4ff11fff91d5d8bc7c133810b1477b818c0043770e315d807f016242523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Imaging, Three-Dimensional - statistics & numerical data</topic><topic>Lung - diagnostic imaging</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><topic>Radiation Dosage</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Signal-To-Noise Ratio</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tomography, X-Ray Computed - statistics & numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Beheshti, S.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobbold, Richard S. C.</au><au>Beheshti, S.</au><au>Paul, Narinder S.</au><au>Hashemi, SayedMasoud</au><au>Palmans, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively Tuned Iterative Low Dose CT Image Denoising</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>26089972</pmid><doi>10.1155/2015/638568</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-12 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4458284 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Computational Biology Humans Imaging, Three-Dimensional - methods Imaging, Three-Dimensional - statistics & numerical data Lung - diagnostic imaging Models, Statistical Phantoms, Imaging Radiation Dosage Radiographic Image Interpretation, Computer-Assisted - methods Signal-To-Noise Ratio Tomography, X-Ray Computed - methods Tomography, X-Ray Computed - statistics & numerical data |
title | Adaptively Tuned Iterative Low Dose CT Image Denoising |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20Tuned%20Iterative%20Low%20Dose%20CT%20Image%20Denoising&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Cobbold,%20Richard%20S.%20C.&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2015/638568&rft_dat=%3Cproquest_pubme%3E1690211426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690211426&rft_id=info:pmid/26089972&rfr_iscdi=true |