A phenotypic in vitro model for the main determinants of human whole heart function

Abstract This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-08, Vol.60, p.20-30
Hauptverfasser: Stancescu, Maria, Molnar, Peter, McAleer, Christopher W, McLamb, William, Long, Christopher J, Oleaga, Carlota, Prot, Jean-Matthieu, Hickman, James J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 20
container_title Biomaterials
container_volume 60
creator Stancescu, Maria
Molnar, Peter
McAleer, Christopher W
McLamb, William
Long, Christopher J
Oleaga, Carlota
Prot, Jean-Matthieu
Hickman, James J
description Abstract This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.
doi_str_mv 10.1016/j.biomaterials.2015.04.035
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4458149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215003907</els_id><sourcerecordid>1735920234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-40aa24185bc4cf06ef57742e3387b71a3477b20ce0344f3d4a4b72a9b9b5e1143</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCILoW_gCxOXDaMv9YJh0pVoYBUiQPlbDnOhHhJ7MV2ttp_w2_hlzXRlqpw6mlkzXtv3vhNUbyhUFKgm3fbsnFhNBmjM0MqGVBZgiiByyfFilaqWssa5NNiBVSwdb2h7KR4kdIW5jcI9rw4YbJWFYBcFdfnZNejD_mwc5Y4_-f33uUYyBhaHEgXIsk9ktE4T1qcJ47OG58TCR3pp9F4ctOHAUmPJmbSTd5mF_zL4lk3O8NXd_W0-H758fri8_rq66cvF-dXa7sBkdcCjGGCVrKxwnawwU4qJRhyXqlGUcOFUg0Di8CF6HgrjGgUM3VTNxIpFfy0ODvq7qZmxNaiz9EMehfdaOJBB-P0vx3vev0j7LUQsqKingXe3gnE8GvClPXoksVhMB7DlDRVCvhscVM9AsplzYDxxdb7I9TGkFLE7t4RBb0kqLf6YYJ6SVCD0HOCM_n1w53uqX8jmwEfjgCcf3bvMOpkHXqLrYtos26De9ycs_9k7OC8s2b4iQdM2zBFv3CoTkyD_rbc0nJKVALwGhS_BdRnykE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735920234</pqid></control><display><type>article</type><title>A phenotypic in vitro model for the main determinants of human whole heart function</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Stancescu, Maria ; Molnar, Peter ; McAleer, Christopher W ; McLamb, William ; Long, Christopher J ; Oleaga, Carlota ; Prot, Jean-Matthieu ; Hickman, James J</creator><creatorcontrib>Stancescu, Maria ; Molnar, Peter ; McAleer, Christopher W ; McLamb, William ; Long, Christopher J ; Oleaga, Carlota ; Prot, Jean-Matthieu ; Hickman, James J</creatorcontrib><description>Abstract This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.04.035</identifier><identifier>PMID: 25978005</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Biomedical materials ; Cardiomyocyte ; Cell Culture Techniques - instrumentation ; Cells, Cultured ; Cellular ; Conduction ; Dentistry ; Determinants ; Drug Evaluation, Preclinical - instrumentation ; Drugs ; Equipment Design ; Force generation ; Functional assay ; Heart - drug effects ; Heart - physiology ; Human ; Humans ; In vitro testing ; Mathematical models ; Micro-Electrical-Mechanical Systems - instrumentation ; Microelectrodes ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - drug effects ; Serum-free ; Surgical implants</subject><ispartof>Biomaterials, 2015-08, Vol.60, p.20-30</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>2015 Published by Elsevier Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-40aa24185bc4cf06ef57742e3387b71a3477b20ce0344f3d4a4b72a9b9b5e1143</citedby><cites>FETCH-LOGICAL-c604t-40aa24185bc4cf06ef57742e3387b71a3477b20ce0344f3d4a4b72a9b9b5e1143</cites><orcidid>0000-0001-9715-9197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.04.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25978005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stancescu, Maria</creatorcontrib><creatorcontrib>Molnar, Peter</creatorcontrib><creatorcontrib>McAleer, Christopher W</creatorcontrib><creatorcontrib>McLamb, William</creatorcontrib><creatorcontrib>Long, Christopher J</creatorcontrib><creatorcontrib>Oleaga, Carlota</creatorcontrib><creatorcontrib>Prot, Jean-Matthieu</creatorcontrib><creatorcontrib>Hickman, James J</creatorcontrib><title>A phenotypic in vitro model for the main determinants of human whole heart function</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.</description><subject>Advanced Basic Science</subject><subject>Biomedical materials</subject><subject>Cardiomyocyte</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cells, Cultured</subject><subject>Cellular</subject><subject>Conduction</subject><subject>Dentistry</subject><subject>Determinants</subject><subject>Drug Evaluation, Preclinical - instrumentation</subject><subject>Drugs</subject><subject>Equipment Design</subject><subject>Force generation</subject><subject>Functional assay</subject><subject>Heart - drug effects</subject><subject>Heart - physiology</subject><subject>Human</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>Mathematical models</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Microelectrodes</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Serum-free</subject><subject>Surgical implants</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQjRCILoW_gCxOXDaMv9YJh0pVoYBUiQPlbDnOhHhJ7MV2ttp_w2_hlzXRlqpw6mlkzXtv3vhNUbyhUFKgm3fbsnFhNBmjM0MqGVBZgiiByyfFilaqWssa5NNiBVSwdb2h7KR4kdIW5jcI9rw4YbJWFYBcFdfnZNejD_mwc5Y4_-f33uUYyBhaHEgXIsk9ktE4T1qcJ47OG58TCR3pp9F4ctOHAUmPJmbSTd5mF_zL4lk3O8NXd_W0-H758fri8_rq66cvF-dXa7sBkdcCjGGCVrKxwnawwU4qJRhyXqlGUcOFUg0Di8CF6HgrjGgUM3VTNxIpFfy0ODvq7qZmxNaiz9EMehfdaOJBB-P0vx3vev0j7LUQsqKingXe3gnE8GvClPXoksVhMB7DlDRVCvhscVM9AsplzYDxxdb7I9TGkFLE7t4RBb0kqLf6YYJ6SVCD0HOCM_n1w53uqX8jmwEfjgCcf3bvMOpkHXqLrYtos26De9ycs_9k7OC8s2b4iQdM2zBFv3CoTkyD_rbc0nJKVALwGhS_BdRnykE</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Stancescu, Maria</creator><creator>Molnar, Peter</creator><creator>McAleer, Christopher W</creator><creator>McLamb, William</creator><creator>Long, Christopher J</creator><creator>Oleaga, Carlota</creator><creator>Prot, Jean-Matthieu</creator><creator>Hickman, James J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9715-9197</orcidid></search><sort><creationdate>20150801</creationdate><title>A phenotypic in vitro model for the main determinants of human whole heart function</title><author>Stancescu, Maria ; Molnar, Peter ; McAleer, Christopher W ; McLamb, William ; Long, Christopher J ; Oleaga, Carlota ; Prot, Jean-Matthieu ; Hickman, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-40aa24185bc4cf06ef57742e3387b71a3477b20ce0344f3d4a4b72a9b9b5e1143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced Basic Science</topic><topic>Biomedical materials</topic><topic>Cardiomyocyte</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cells, Cultured</topic><topic>Cellular</topic><topic>Conduction</topic><topic>Dentistry</topic><topic>Determinants</topic><topic>Drug Evaluation, Preclinical - instrumentation</topic><topic>Drugs</topic><topic>Equipment Design</topic><topic>Force generation</topic><topic>Functional assay</topic><topic>Heart - drug effects</topic><topic>Heart - physiology</topic><topic>Human</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>Mathematical models</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Microelectrodes</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Serum-free</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stancescu, Maria</creatorcontrib><creatorcontrib>Molnar, Peter</creatorcontrib><creatorcontrib>McAleer, Christopher W</creatorcontrib><creatorcontrib>McLamb, William</creatorcontrib><creatorcontrib>Long, Christopher J</creatorcontrib><creatorcontrib>Oleaga, Carlota</creatorcontrib><creatorcontrib>Prot, Jean-Matthieu</creatorcontrib><creatorcontrib>Hickman, James J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stancescu, Maria</au><au>Molnar, Peter</au><au>McAleer, Christopher W</au><au>McLamb, William</au><au>Long, Christopher J</au><au>Oleaga, Carlota</au><au>Prot, Jean-Matthieu</au><au>Hickman, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phenotypic in vitro model for the main determinants of human whole heart function</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>60</volume><spage>20</spage><epage>30</epage><pages>20-30</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25978005</pmid><doi>10.1016/j.biomaterials.2015.04.035</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9715-9197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-08, Vol.60, p.20-30
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4458149
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Advanced Basic Science
Biomedical materials
Cardiomyocyte
Cell Culture Techniques - instrumentation
Cells, Cultured
Cellular
Conduction
Dentistry
Determinants
Drug Evaluation, Preclinical - instrumentation
Drugs
Equipment Design
Force generation
Functional assay
Heart - drug effects
Heart - physiology
Human
Humans
In vitro testing
Mathematical models
Micro-Electrical-Mechanical Systems - instrumentation
Microelectrodes
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Serum-free
Surgical implants
title A phenotypic in vitro model for the main determinants of human whole heart function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phenotypic%20in%C2%A0vitro%20model%20for%20the%20main%20determinants%20of%20human%20whole%20heart%20function&rft.jtitle=Biomaterials&rft.au=Stancescu,%20Maria&rft.date=2015-08-01&rft.volume=60&rft.spage=20&rft.epage=30&rft.pages=20-30&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.04.035&rft_dat=%3Cproquest_pubme%3E1735920234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735920234&rft_id=info:pmid/25978005&rft_els_id=1_s2_0_S0142961215003907&rfr_iscdi=true