Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging
The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients a...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2015-06, Vol.108 (11), p.2740-2749 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2749 |
---|---|
container_issue | 11 |
container_start_page | 2740 |
container_title | Biophysical journal |
container_volume | 108 |
creator | Taylor, Erik N. Hoffman, Matthew P. Aninwene, George E. Gilbert, Richard J. |
description | The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues. |
doi_str_mv | 10.1016/j.bpj.2015.03.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4457503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349515003987</els_id><sourcerecordid>1686413496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhkjBOYicrJKSqomWlIv6Lo-XYk11HWWexk0Xtp2dWWyrgwGls-TfPM-8x9kxALkCoV33e7vq8ACFzKHNQ4gFbCFkVGUCjHrIFAKisrJbyhJ2m1AOIQoJ4zE4KBeVS1HLB9EczTRhD4mPHV4GOCe3kw5pf-hYjP4_R3CT-GfdoBnTcB_59Mw7I38_JUvnppw2_woDRDP6WgE_Zl52xyFdbsyaZJ-xRZ4aET-_qGft2-fbrxbvs-sPV6uL8OrNVvZwy2qGoEcGhQetcq7q6kK5t7LKji5WlcVI1qpNdI5TqKgPO1QbAFJ1tmxbKM_bmqLub2y06i2GiifQu-q2JN3o0Xv_9EvxGr8e9ripZSyhJ4OWdQBx_zJgmvfXJ4jCYgOOctKDvK0FmKkJf_IP24xwDrXegGijJ9poocaRsHFOK2N0PI0Af4tO9pvj0IT4Npab4qOf5n1vcd_zOi4DXRwDJy73HqJP1GCw6Hyk37Ub_H_lfwKesew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1688030067</pqid></control><display><type>article</type><title>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Taylor, Erik N. ; Hoffman, Matthew P. ; Aninwene, George E. ; Gilbert, Richard J.</creator><creatorcontrib>Taylor, Erik N. ; Hoffman, Matthew P. ; Aninwene, George E. ; Gilbert, Richard J.</creatorcontrib><description>The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2015.03.061</identifier><identifier>PMID: 26039175</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics ; Correlation analysis ; Diffusion ; Female ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging ; Male ; Mice ; Morphology ; Muscles - cytology ; NMR ; Nuclear magnetic resonance ; Probability distribution ; Simulation ; Systems Biophysics ; Tongue</subject><ispartof>Biophysical journal, 2015-06, Vol.108 (11), p.2740-2749</ispartof><rights>2015 Biophysical Society</rights><rights>Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 2, 2015</rights><rights>2015 by the Biophysical Society. 2015 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</citedby><cites>FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457503/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2015.03.061$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26039175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Erik N.</creatorcontrib><creatorcontrib>Hoffman, Matthew P.</creatorcontrib><creatorcontrib>Aninwene, George E.</creatorcontrib><creatorcontrib>Gilbert, Richard J.</creatorcontrib><title>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.</description><subject>Animals</subject><subject>Biophysics</subject><subject>Correlation analysis</subject><subject>Diffusion</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mice</subject><subject>Morphology</subject><subject>Muscles - cytology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Probability distribution</subject><subject>Simulation</subject><subject>Systems Biophysics</subject><subject>Tongue</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhkjBOYicrJKSqomWlIv6Lo-XYk11HWWexk0Xtp2dWWyrgwGls-TfPM-8x9kxALkCoV33e7vq8ACFzKHNQ4gFbCFkVGUCjHrIFAKisrJbyhJ2m1AOIQoJ4zE4KBeVS1HLB9EczTRhD4mPHV4GOCe3kw5pf-hYjP4_R3CT-GfdoBnTcB_59Mw7I38_JUvnppw2_woDRDP6WgE_Zl52xyFdbsyaZJ-xRZ4aET-_qGft2-fbrxbvs-sPV6uL8OrNVvZwy2qGoEcGhQetcq7q6kK5t7LKji5WlcVI1qpNdI5TqKgPO1QbAFJ1tmxbKM_bmqLub2y06i2GiifQu-q2JN3o0Xv_9EvxGr8e9ripZSyhJ4OWdQBx_zJgmvfXJ4jCYgOOctKDvK0FmKkJf_IP24xwDrXegGijJ9poocaRsHFOK2N0PI0Af4tO9pvj0IT4Npab4qOf5n1vcd_zOi4DXRwDJy73HqJP1GCw6Hyk37Ub_H_lfwKesew</recordid><startdate>20150602</startdate><enddate>20150602</enddate><creator>Taylor, Erik N.</creator><creator>Hoffman, Matthew P.</creator><creator>Aninwene, George E.</creator><creator>Gilbert, Richard J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150602</creationdate><title>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</title><author>Taylor, Erik N. ; Hoffman, Matthew P. ; Aninwene, George E. ; Gilbert, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>Correlation analysis</topic><topic>Diffusion</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mice</topic><topic>Morphology</topic><topic>Muscles - cytology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Probability distribution</topic><topic>Simulation</topic><topic>Systems Biophysics</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Erik N.</creatorcontrib><creatorcontrib>Hoffman, Matthew P.</creatorcontrib><creatorcontrib>Aninwene, George E.</creatorcontrib><creatorcontrib>Gilbert, Richard J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Erik N.</au><au>Hoffman, Matthew P.</au><au>Aninwene, George E.</au><au>Gilbert, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2015-06-02</date><risdate>2015</risdate><volume>108</volume><issue>11</issue><spage>2740</spage><epage>2749</epage><pages>2740-2749</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26039175</pmid><doi>10.1016/j.bpj.2015.03.061</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2015-06, Vol.108 (11), p.2740-2749 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4457503 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biophysics Correlation analysis Diffusion Female Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Mice Morphology Muscles - cytology NMR Nuclear magnetic resonance Probability distribution Simulation Systems Biophysics Tongue |
title | Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20Intersecting%20Fiber%20Arrays%20Revealed%20in%20Whole%20Muscle%20with%20Generalized%20Q-Space%20Imaging&rft.jtitle=Biophysical%20journal&rft.au=Taylor,%20Erik%C2%A0N.&rft.date=2015-06-02&rft.volume=108&rft.issue=11&rft.spage=2740&rft.epage=2749&rft.pages=2740-2749&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2015.03.061&rft_dat=%3Cproquest_pubme%3E1686413496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1688030067&rft_id=info:pmid/26039175&rft_els_id=S0006349515003987&rfr_iscdi=true |