Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging

The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2015-06, Vol.108 (11), p.2740-2749
Hauptverfasser: Taylor, Erik N., Hoffman, Matthew P., Aninwene, George E., Gilbert, Richard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2749
container_issue 11
container_start_page 2740
container_title Biophysical journal
container_volume 108
creator Taylor, Erik N.
Hoffman, Matthew P.
Aninwene, George E.
Gilbert, Richard J.
description The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.
doi_str_mv 10.1016/j.bpj.2015.03.061
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4457503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349515003987</els_id><sourcerecordid>1686413496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhkjBOYicrJKSqomWlIv6Lo-XYk11HWWexk0Xtp2dWWyrgwGls-TfPM-8x9kxALkCoV33e7vq8ACFzKHNQ4gFbCFkVGUCjHrIFAKisrJbyhJ2m1AOIQoJ4zE4KBeVS1HLB9EczTRhD4mPHV4GOCe3kw5pf-hYjP4_R3CT-GfdoBnTcB_59Mw7I38_JUvnppw2_woDRDP6WgE_Zl52xyFdbsyaZJ-xRZ4aET-_qGft2-fbrxbvs-sPV6uL8OrNVvZwy2qGoEcGhQetcq7q6kK5t7LKji5WlcVI1qpNdI5TqKgPO1QbAFJ1tmxbKM_bmqLub2y06i2GiifQu-q2JN3o0Xv_9EvxGr8e9ripZSyhJ4OWdQBx_zJgmvfXJ4jCYgOOctKDvK0FmKkJf_IP24xwDrXegGijJ9poocaRsHFOK2N0PI0Af4tO9pvj0IT4Npab4qOf5n1vcd_zOi4DXRwDJy73HqJP1GCw6Hyk37Ub_H_lfwKesew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1688030067</pqid></control><display><type>article</type><title>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Taylor, Erik N. ; Hoffman, Matthew P. ; Aninwene, George E. ; Gilbert, Richard J.</creator><creatorcontrib>Taylor, Erik N. ; Hoffman, Matthew P. ; Aninwene, George E. ; Gilbert, Richard J.</creatorcontrib><description>The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2015.03.061</identifier><identifier>PMID: 26039175</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics ; Correlation analysis ; Diffusion ; Female ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging ; Male ; Mice ; Morphology ; Muscles - cytology ; NMR ; Nuclear magnetic resonance ; Probability distribution ; Simulation ; Systems Biophysics ; Tongue</subject><ispartof>Biophysical journal, 2015-06, Vol.108 (11), p.2740-2749</ispartof><rights>2015 Biophysical Society</rights><rights>Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 2, 2015</rights><rights>2015 by the Biophysical Society. 2015 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</citedby><cites>FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457503/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2015.03.061$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26039175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Erik N.</creatorcontrib><creatorcontrib>Hoffman, Matthew P.</creatorcontrib><creatorcontrib>Aninwene, George E.</creatorcontrib><creatorcontrib>Gilbert, Richard J.</creatorcontrib><title>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.</description><subject>Animals</subject><subject>Biophysics</subject><subject>Correlation analysis</subject><subject>Diffusion</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mice</subject><subject>Morphology</subject><subject>Muscles - cytology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Probability distribution</subject><subject>Simulation</subject><subject>Systems Biophysics</subject><subject>Tongue</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EotvCB-CCLHHhkjBOYicrJKSqomWlIv6Lo-XYk11HWWexk0Xtp2dWWyrgwGls-TfPM-8x9kxALkCoV33e7vq8ACFzKHNQ4gFbCFkVGUCjHrIFAKisrJbyhJ2m1AOIQoJ4zE4KBeVS1HLB9EczTRhD4mPHV4GOCe3kw5pf-hYjP4_R3CT-GfdoBnTcB_59Mw7I38_JUvnppw2_woDRDP6WgE_Zl52xyFdbsyaZJ-xRZ4aET-_qGft2-fbrxbvs-sPV6uL8OrNVvZwy2qGoEcGhQetcq7q6kK5t7LKji5WlcVI1qpNdI5TqKgPO1QbAFJ1tmxbKM_bmqLub2y06i2GiifQu-q2JN3o0Xv_9EvxGr8e9ripZSyhJ4OWdQBx_zJgmvfXJ4jCYgOOctKDvK0FmKkJf_IP24xwDrXegGijJ9poocaRsHFOK2N0PI0Af4tO9pvj0IT4Npab4qOf5n1vcd_zOi4DXRwDJy73HqJP1GCw6Hyk37Ub_H_lfwKesew</recordid><startdate>20150602</startdate><enddate>20150602</enddate><creator>Taylor, Erik N.</creator><creator>Hoffman, Matthew P.</creator><creator>Aninwene, George E.</creator><creator>Gilbert, Richard J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150602</creationdate><title>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</title><author>Taylor, Erik N. ; Hoffman, Matthew P. ; Aninwene, George E. ; Gilbert, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-20127ee0deaecddb6f725db8c9fdb6c53ad5686f5f8166f4a0dd7a00a2fcb8b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>Correlation analysis</topic><topic>Diffusion</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mice</topic><topic>Morphology</topic><topic>Muscles - cytology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Probability distribution</topic><topic>Simulation</topic><topic>Systems Biophysics</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Erik N.</creatorcontrib><creatorcontrib>Hoffman, Matthew P.</creatorcontrib><creatorcontrib>Aninwene, George E.</creatorcontrib><creatorcontrib>Gilbert, Richard J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Erik N.</au><au>Hoffman, Matthew P.</au><au>Aninwene, George E.</au><au>Gilbert, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2015-06-02</date><risdate>2015</risdate><volume>108</volume><issue>11</issue><spage>2740</spage><epage>2749</epage><pages>2740-2749</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26039175</pmid><doi>10.1016/j.bpj.2015.03.061</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2015-06, Vol.108 (11), p.2740-2749
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4457503
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biophysics
Correlation analysis
Diffusion
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Mice
Morphology
Muscles - cytology
NMR
Nuclear magnetic resonance
Probability distribution
Simulation
Systems Biophysics
Tongue
title Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20Intersecting%20Fiber%20Arrays%20Revealed%20in%20Whole%20Muscle%20with%20Generalized%20Q-Space%20Imaging&rft.jtitle=Biophysical%20journal&rft.au=Taylor,%20Erik%C2%A0N.&rft.date=2015-06-02&rft.volume=108&rft.issue=11&rft.spage=2740&rft.epage=2749&rft.pages=2740-2749&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2015.03.061&rft_dat=%3Cproquest_pubme%3E1686413496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1688030067&rft_id=info:pmid/26039175&rft_els_id=S0006349515003987&rfr_iscdi=true