Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides

Comparative (electro)­catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-05, Vol.119 (21), p.11739-11753
Hauptverfasser: Thalinger, Ramona, Opitz, Alexander K, Kogler, Sandra, Heggen, Marc, Stroppa, Daniel, Schmidmair, Daniela, Tappert, Ralf, Fleig, Jürgen, Klötzer, Bernhard, Penner, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11753
container_issue 21
container_start_page 11739
container_title Journal of physical chemistry. C
container_volume 119
creator Thalinger, Ramona
Opitz, Alexander K
Kogler, Sandra
Heggen, Marc
Stroppa, Daniel
Schmidmair, Daniela
Tappert, Ralf
Fleig, Jürgen
Klötzer, Bernhard
Penner, Simon
description Comparative (electro)­catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)­catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.
doi_str_mv 10.1021/acs.jpcc.5b02947
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762061117</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-290eb9269aab0d78cf22a5d606d86769c4cee1258c4c3c16c2e4f75facbbeaec3</originalsourceid><addsrcrecordid>eNqNkc1PGzEQxa2qqAm0d05ojz2wwd_evSBViE9RpWqperS83lnisNkNtjci_31NEyI4IPXkseb3nmbmIXRI8IRgSk6MDZP50tqJqDAtufqAxqRkNFdciI-7mqsR2g9hjrFgmLBPaEQl5kIxNkY3f0wEn1-akP2auSZmpquz7xBnpoPsJxgb3crFddZ36VcP1lUtZD_A96vw4CLkd-slZNMnV0P4jPYa0wb4sn0P0O-L87uzq_x2enl99u02NwKzmNMSQ1VSWRpT4VoVtqHUiFpiWRdSydJyC0CoKFLBLJGWAm-UaIytKjBg2QE63fguh2oBtYUuetPqpXcL49e6N06_7XRupu_7leY8DSCLZPB1a-D7xwFC1AsXLLRt2rkfgiYFlZIrxv8DVZJiSQhRCcUb1Po-BA_NbiKC9XNaOqWln9PS27SS5Oj1JjvBSzwJON4A_6T94Lt02Pf9_gJ8FaIz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762061117</pqid></control><display><type>article</type><title>Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides</title><source>ACS Publications</source><creator>Thalinger, Ramona ; Opitz, Alexander K ; Kogler, Sandra ; Heggen, Marc ; Stroppa, Daniel ; Schmidmair, Daniela ; Tappert, Ralf ; Fleig, Jürgen ; Klötzer, Bernhard ; Penner, Simon</creator><creatorcontrib>Thalinger, Ramona ; Opitz, Alexander K ; Kogler, Sandra ; Heggen, Marc ; Stroppa, Daniel ; Schmidmair, Daniela ; Tappert, Ralf ; Fleig, Jürgen ; Klötzer, Bernhard ; Penner, Simon</creatorcontrib><description>Comparative (electro)­catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)­catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b02947</identifier><identifier>PMID: 26045733</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Catalysts ; Inverse ; Lattice vacancies ; Methane ; Oxidation ; Oxides ; Reduction</subject><ispartof>Journal of physical chemistry. C, 2015-05, Vol.119 (21), p.11739-11753</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-290eb9269aab0d78cf22a5d606d86769c4cee1258c4c3c16c2e4f75facbbeaec3</citedby><cites>FETCH-LOGICAL-a503t-290eb9269aab0d78cf22a5d606d86769c4cee1258c4c3c16c2e4f75facbbeaec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b02947$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b02947$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26045733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thalinger, Ramona</creatorcontrib><creatorcontrib>Opitz, Alexander K</creatorcontrib><creatorcontrib>Kogler, Sandra</creatorcontrib><creatorcontrib>Heggen, Marc</creatorcontrib><creatorcontrib>Stroppa, Daniel</creatorcontrib><creatorcontrib>Schmidmair, Daniela</creatorcontrib><creatorcontrib>Tappert, Ralf</creatorcontrib><creatorcontrib>Fleig, Jürgen</creatorcontrib><creatorcontrib>Klötzer, Bernhard</creatorcontrib><creatorcontrib>Penner, Simon</creatorcontrib><title>Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Comparative (electro)­catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)­catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Inverse</subject><subject>Lattice vacancies</subject><subject>Methane</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Reduction</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqNkc1PGzEQxa2qqAm0d05ojz2wwd_evSBViE9RpWqperS83lnisNkNtjci_31NEyI4IPXkseb3nmbmIXRI8IRgSk6MDZP50tqJqDAtufqAxqRkNFdciI-7mqsR2g9hjrFgmLBPaEQl5kIxNkY3f0wEn1-akP2auSZmpquz7xBnpoPsJxgb3crFddZ36VcP1lUtZD_A96vw4CLkd-slZNMnV0P4jPYa0wb4sn0P0O-L87uzq_x2enl99u02NwKzmNMSQ1VSWRpT4VoVtqHUiFpiWRdSydJyC0CoKFLBLJGWAm-UaIytKjBg2QE63fguh2oBtYUuetPqpXcL49e6N06_7XRupu_7leY8DSCLZPB1a-D7xwFC1AsXLLRt2rkfgiYFlZIrxv8DVZJiSQhRCcUb1Po-BA_NbiKC9XNaOqWln9PS27SS5Oj1JjvBSzwJON4A_6T94Lt02Pf9_gJ8FaIz</recordid><startdate>20150528</startdate><enddate>20150528</enddate><creator>Thalinger, Ramona</creator><creator>Opitz, Alexander K</creator><creator>Kogler, Sandra</creator><creator>Heggen, Marc</creator><creator>Stroppa, Daniel</creator><creator>Schmidmair, Daniela</creator><creator>Tappert, Ralf</creator><creator>Fleig, Jürgen</creator><creator>Klötzer, Bernhard</creator><creator>Penner, Simon</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150528</creationdate><title>Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides</title><author>Thalinger, Ramona ; Opitz, Alexander K ; Kogler, Sandra ; Heggen, Marc ; Stroppa, Daniel ; Schmidmair, Daniela ; Tappert, Ralf ; Fleig, Jürgen ; Klötzer, Bernhard ; Penner, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-290eb9269aab0d78cf22a5d606d86769c4cee1258c4c3c16c2e4f75facbbeaec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Inverse</topic><topic>Lattice vacancies</topic><topic>Methane</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thalinger, Ramona</creatorcontrib><creatorcontrib>Opitz, Alexander K</creatorcontrib><creatorcontrib>Kogler, Sandra</creatorcontrib><creatorcontrib>Heggen, Marc</creatorcontrib><creatorcontrib>Stroppa, Daniel</creatorcontrib><creatorcontrib>Schmidmair, Daniela</creatorcontrib><creatorcontrib>Tappert, Ralf</creatorcontrib><creatorcontrib>Fleig, Jürgen</creatorcontrib><creatorcontrib>Klötzer, Bernhard</creatorcontrib><creatorcontrib>Penner, Simon</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thalinger, Ramona</au><au>Opitz, Alexander K</au><au>Kogler, Sandra</au><au>Heggen, Marc</au><au>Stroppa, Daniel</au><au>Schmidmair, Daniela</au><au>Tappert, Ralf</au><au>Fleig, Jürgen</au><au>Klötzer, Bernhard</au><au>Penner, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-05-28</date><risdate>2015</risdate><volume>119</volume><issue>21</issue><spage>11739</spage><epage>11753</epage><pages>11739-11753</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Comparative (electro)­catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)­catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26045733</pmid><doi>10.1021/acs.jpcc.5b02947</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-05, Vol.119 (21), p.11739-11753
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450368
source ACS Publications
subjects Catalysis
Catalysts
Inverse
Lattice vacancies
Methane
Oxidation
Oxides
Reduction
title Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-Gas%20Shift%20and%20Methane%20Reactivity%20on%20Reducible%20Perovskite-Type%20Oxides&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Thalinger,%20Ramona&rft.date=2015-05-28&rft.volume=119&rft.issue=21&rft.spage=11739&rft.epage=11753&rft.pages=11739-11753&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b02947&rft_dat=%3Cproquest_pubme%3E1762061117%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762061117&rft_id=info:pmid/26045733&rfr_iscdi=true