Adaptive Autoregressive Model for Reduction of Noise in SPECT
This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared wit...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2015-01, Vol.2015 (2015), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2015 |
creator | Sohlberg, Antti Ihalainen, Heimo Hytti, Heli Takalo, Reijo |
description | This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects. |
doi_str_mv | 10.1155/2015/494691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1690210056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</originalsourceid><addsrcrecordid>eNqNkE1LJDEQhoOsqKuevC99XFxmTXUn6eSgMAyjLrgqfoC3kEkqmqWnMybdLv57exh30Nueqop6eKt4CDkA-hOA86OSAj9iigkFG2QHaiZHogb5Zd3Th23yNec_lHKoOWyR7VJQqZQQO-R47MyiCy9YjPsuJnxMmPNy_B0dNoWPqbhB19suxLaIvriMIWMR2uL2ejq52yOb3jQZ99_rLrk_nd5NzkcXV2e_JuOLkWWV6kagLLCytGomvQGUZelrXrNaWl4LPzPD2juFXgkpnRyKgVI5xZ1D5rgV1S45WeUu-tkcncW2S6bRixTmJr3qaIL-vGnDk36ML5oxTitaDQHf3wNSfO4xd3oessWmMS3GPmsQipYwCFre-rFCbYo5J_TrM0D1UrheCtcr4QP97eNna_af4QE4XAFPoXXmb_i_NBwQ9OYDzGsFsnoDJTCR7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690210056</pqid></control><display><type>article</type><title>Adaptive Autoregressive Model for Reduction of Noise in SPECT</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Sohlberg, Antti ; Ihalainen, Heimo ; Hytti, Heli ; Takalo, Reijo</creator><contributor>Li, Liang</contributor><creatorcontrib>Sohlberg, Antti ; Ihalainen, Heimo ; Hytti, Heli ; Takalo, Reijo ; Li, Liang</creatorcontrib><description>This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2015/494691</identifier><identifier>PMID: 26089966</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computational Biology ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Models, Statistical ; Phantoms, Imaging ; Regression Analysis ; Tomography, Emission-Computed, Single-Photon - statistics & numerical data</subject><ispartof>Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-9</ispartof><rights>Copyright © 2015 Reijo Takalo et al.</rights><rights>Copyright © 2015 Reijo Takalo et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</citedby><cites>FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</cites><orcidid>0000-0002-7166-9399 ; 0000-0002-0520-3064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450303/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450303/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26089966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Li, Liang</contributor><creatorcontrib>Sohlberg, Antti</creatorcontrib><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Hytti, Heli</creatorcontrib><creatorcontrib>Takalo, Reijo</creatorcontrib><title>Adaptive Autoregressive Model for Reduction of Noise in SPECT</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><subject>Regression Analysis</subject><subject>Tomography, Emission-Computed, Single-Photon - statistics & numerical data</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE1LJDEQhoOsqKuevC99XFxmTXUn6eSgMAyjLrgqfoC3kEkqmqWnMybdLv57exh30Nueqop6eKt4CDkA-hOA86OSAj9iigkFG2QHaiZHogb5Zd3Th23yNec_lHKoOWyR7VJQqZQQO-R47MyiCy9YjPsuJnxMmPNy_B0dNoWPqbhB19suxLaIvriMIWMR2uL2ejq52yOb3jQZ99_rLrk_nd5NzkcXV2e_JuOLkWWV6kagLLCytGomvQGUZelrXrNaWl4LPzPD2juFXgkpnRyKgVI5xZ1D5rgV1S45WeUu-tkcncW2S6bRixTmJr3qaIL-vGnDk36ML5oxTitaDQHf3wNSfO4xd3oessWmMS3GPmsQipYwCFre-rFCbYo5J_TrM0D1UrheCtcr4QP97eNna_af4QE4XAFPoXXmb_i_NBwQ9OYDzGsFsnoDJTCR7w</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Sohlberg, Antti</creator><creator>Ihalainen, Heimo</creator><creator>Hytti, Heli</creator><creator>Takalo, Reijo</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7166-9399</orcidid><orcidid>https://orcid.org/0000-0002-0520-3064</orcidid></search><sort><creationdate>20150101</creationdate><title>Adaptive Autoregressive Model for Reduction of Noise in SPECT</title><author>Sohlberg, Antti ; Ihalainen, Heimo ; Hytti, Heli ; Takalo, Reijo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><topic>Regression Analysis</topic><topic>Tomography, Emission-Computed, Single-Photon - statistics & numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohlberg, Antti</creatorcontrib><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Hytti, Heli</creatorcontrib><creatorcontrib>Takalo, Reijo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohlberg, Antti</au><au>Ihalainen, Heimo</au><au>Hytti, Heli</au><au>Takalo, Reijo</au><au>Li, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Autoregressive Model for Reduction of Noise in SPECT</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>26089966</pmid><doi>10.1155/2015/494691</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7166-9399</orcidid><orcidid>https://orcid.org/0000-0002-0520-3064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-9 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450303 |
source | MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Computational Biology Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Models, Statistical Phantoms, Imaging Regression Analysis Tomography, Emission-Computed, Single-Photon - statistics & numerical data |
title | Adaptive Autoregressive Model for Reduction of Noise in SPECT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Autoregressive%20Model%20for%20Reduction%20of%20Noise%20in%20SPECT&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Sohlberg,%20Antti&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2015/494691&rft_dat=%3Cproquest_pubme%3E1690210056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690210056&rft_id=info:pmid/26089966&rfr_iscdi=true |