Adaptive Autoregressive Model for Reduction of Noise in SPECT

This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2015-01, Vol.2015 (2015), p.1-9
Hauptverfasser: Sohlberg, Antti, Ihalainen, Heimo, Hytti, Heli, Takalo, Reijo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2015
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2015
creator Sohlberg, Antti
Ihalainen, Heimo
Hytti, Heli
Takalo, Reijo
description This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.
doi_str_mv 10.1155/2015/494691
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1690210056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</originalsourceid><addsrcrecordid>eNqNkE1LJDEQhoOsqKuevC99XFxmTXUn6eSgMAyjLrgqfoC3kEkqmqWnMybdLv57exh30Nueqop6eKt4CDkA-hOA86OSAj9iigkFG2QHaiZHogb5Zd3Th23yNec_lHKoOWyR7VJQqZQQO-R47MyiCy9YjPsuJnxMmPNy_B0dNoWPqbhB19suxLaIvriMIWMR2uL2ejq52yOb3jQZ99_rLrk_nd5NzkcXV2e_JuOLkWWV6kagLLCytGomvQGUZelrXrNaWl4LPzPD2juFXgkpnRyKgVI5xZ1D5rgV1S45WeUu-tkcncW2S6bRixTmJr3qaIL-vGnDk36ML5oxTitaDQHf3wNSfO4xd3oessWmMS3GPmsQipYwCFre-rFCbYo5J_TrM0D1UrheCtcr4QP97eNna_af4QE4XAFPoXXmb_i_NBwQ9OYDzGsFsnoDJTCR7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690210056</pqid></control><display><type>article</type><title>Adaptive Autoregressive Model for Reduction of Noise in SPECT</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Sohlberg, Antti ; Ihalainen, Heimo ; Hytti, Heli ; Takalo, Reijo</creator><contributor>Li, Liang</contributor><creatorcontrib>Sohlberg, Antti ; Ihalainen, Heimo ; Hytti, Heli ; Takalo, Reijo ; Li, Liang</creatorcontrib><description>This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2015/494691</identifier><identifier>PMID: 26089966</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computational Biology ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Models, Statistical ; Phantoms, Imaging ; Regression Analysis ; Tomography, Emission-Computed, Single-Photon - statistics &amp; numerical data</subject><ispartof>Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-9</ispartof><rights>Copyright © 2015 Reijo Takalo et al.</rights><rights>Copyright © 2015 Reijo Takalo et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</citedby><cites>FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</cites><orcidid>0000-0002-7166-9399 ; 0000-0002-0520-3064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450303/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450303/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26089966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Li, Liang</contributor><creatorcontrib>Sohlberg, Antti</creatorcontrib><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Hytti, Heli</creatorcontrib><creatorcontrib>Takalo, Reijo</creatorcontrib><title>Adaptive Autoregressive Model for Reduction of Noise in SPECT</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><subject>Regression Analysis</subject><subject>Tomography, Emission-Computed, Single-Photon - statistics &amp; numerical data</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE1LJDEQhoOsqKuevC99XFxmTXUn6eSgMAyjLrgqfoC3kEkqmqWnMybdLv57exh30Nueqop6eKt4CDkA-hOA86OSAj9iigkFG2QHaiZHogb5Zd3Th23yNec_lHKoOWyR7VJQqZQQO-R47MyiCy9YjPsuJnxMmPNy_B0dNoWPqbhB19suxLaIvriMIWMR2uL2ejq52yOb3jQZ99_rLrk_nd5NzkcXV2e_JuOLkWWV6kagLLCytGomvQGUZelrXrNaWl4LPzPD2juFXgkpnRyKgVI5xZ1D5rgV1S45WeUu-tkcncW2S6bRixTmJr3qaIL-vGnDk36ML5oxTitaDQHf3wNSfO4xd3oessWmMS3GPmsQipYwCFre-rFCbYo5J_TrM0D1UrheCtcr4QP97eNna_af4QE4XAFPoXXmb_i_NBwQ9OYDzGsFsnoDJTCR7w</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Sohlberg, Antti</creator><creator>Ihalainen, Heimo</creator><creator>Hytti, Heli</creator><creator>Takalo, Reijo</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7166-9399</orcidid><orcidid>https://orcid.org/0000-0002-0520-3064</orcidid></search><sort><creationdate>20150101</creationdate><title>Adaptive Autoregressive Model for Reduction of Noise in SPECT</title><author>Sohlberg, Antti ; Ihalainen, Heimo ; Hytti, Heli ; Takalo, Reijo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-19c1422c9b8fa1e822f757478c576fba9c1fd9ef9688d8f96a129d95dde4d5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><topic>Regression Analysis</topic><topic>Tomography, Emission-Computed, Single-Photon - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohlberg, Antti</creatorcontrib><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Hytti, Heli</creatorcontrib><creatorcontrib>Takalo, Reijo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohlberg, Antti</au><au>Ihalainen, Heimo</au><au>Hytti, Heli</au><au>Takalo, Reijo</au><au>Li, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Autoregressive Model for Reduction of Noise in SPECT</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM) reconstruction images (AR-OSEM-AR method). The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method). A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM) of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>26089966</pmid><doi>10.1155/2015/494691</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7166-9399</orcidid><orcidid>https://orcid.org/0000-0002-0520-3064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2015-01, Vol.2015 (2015), p.1-9
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450303
source MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Algorithms
Computational Biology
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Models, Statistical
Phantoms, Imaging
Regression Analysis
Tomography, Emission-Computed, Single-Photon - statistics & numerical data
title Adaptive Autoregressive Model for Reduction of Noise in SPECT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Autoregressive%20Model%20for%20Reduction%20of%20Noise%20in%20SPECT&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Sohlberg,%20Antti&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2015/494691&rft_dat=%3Cproquest_pubme%3E1690210056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690210056&rft_id=info:pmid/26089966&rfr_iscdi=true