Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma
Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2015-04, Vol.16 (1), p.279-279, Article 279 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 1 |
container_start_page | 279 |
container_title | BMC genomics |
container_volume | 16 |
creator | Kim, Bu-Yeo Choi, Dong Wook Woo, Seon Rang Park, Eun-Ran Lee, Je-Geun Kim, Su-Hyeon Koo, Imhoi Park, Sun-Hoo Han, Chul Ju Kim, Sang Bum Yeom, Young Il Yang, Suk-Jin Yu, Ami Lee, Jae Won Jang, Ja June Cho, Myung-Haing Jeon, Won Kyung Park, Young Nyun Suh, Kyung-Suk Lee, Kee-Ho |
description | Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence.
By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC ( |
doi_str_mv | 10.1186/s12864-015-1472-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4448317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541364338</galeid><sourcerecordid>A541364338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-df66e3569fff224df75341d0fc4d68b608cb2a1f268a35985e06ad5db3b1c47e3</originalsourceid><addsrcrecordid>eNptkltr3DAQhUVpaS7tD-hLMfSleXCq0c3KSyENvQQChbR5FrI82lWxra1kbzf_vlqchiwUPWhG850DIw4hb4CeA2j1IQPTStQUZA2iYfXuGTkuBdQMlHj-pD4iJzn_ohQazeRLcsSk1hoEPSZ3t-jmlHB0WNucowt2wq7a2Gn9x97nKozVGksXppCrT9U2pDnXm5hLv8VlFB32_dzbVDmbXBjjYF-RF972GV8_3Kfk7svnn1ff6pvvX6-vLm9qJymd6s4rhVyqC-89Y6LzjeQCOuqd6JRuFdWuZRY8U9pyeaElUmU72bW8BSca5Kfk4-K7mdsBO4fjlGxvNikMNt2baIM5nIxhbVZxa4QQmkNTDN4_GKT4e8Y8mSHk_T52xDhnA0oLwYFxVdB3C7qyPZow-lgc3R43l1IAV4JzXajz_1DldDgEF0f0obwfCM4OBIWZcDet7Jyzuf5xe8jCwroUc07oHzcFavaJMEsiTEmE2SfC7Irm7dMvelT8iwD_C8MDsls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684431236</pqid></control><display><type>article</type><title>Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Kim, Bu-Yeo ; Choi, Dong Wook ; Woo, Seon Rang ; Park, Eun-Ran ; Lee, Je-Geun ; Kim, Su-Hyeon ; Koo, Imhoi ; Park, Sun-Hoo ; Han, Chul Ju ; Kim, Sang Bum ; Yeom, Young Il ; Yang, Suk-Jin ; Yu, Ami ; Lee, Jae Won ; Jang, Ja June ; Cho, Myung-Haing ; Jeon, Won Kyung ; Park, Young Nyun ; Suh, Kyung-Suk ; Lee, Kee-Ho</creator><creatorcontrib>Kim, Bu-Yeo ; Choi, Dong Wook ; Woo, Seon Rang ; Park, Eun-Ran ; Lee, Je-Geun ; Kim, Su-Hyeon ; Koo, Imhoi ; Park, Sun-Hoo ; Han, Chul Ju ; Kim, Sang Bum ; Yeom, Young Il ; Yang, Suk-Jin ; Yu, Ami ; Lee, Jae Won ; Jang, Ja June ; Cho, Myung-Haing ; Jeon, Won Kyung ; Park, Young Nyun ; Suh, Kyung-Suk ; Lee, Kee-Ho</creatorcontrib><description>Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence.
By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm).
Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-015-1472-x</identifier><identifier>PMID: 25888140</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adult ; Algorithms ; Analysis ; Carcinoma, Hepatocellular - complications ; Carcinoma, Hepatocellular - diagnosis ; Carcinoma, Hepatocellular - epidemiology ; Cluster Analysis ; Databases, Factual ; Disease-Free Survival ; Female ; Genes ; Genetic aspects ; Hepacivirus - isolation & purification ; Hepatitis B - complications ; Hepatitis B - diagnosis ; Hepatitis B - virology ; Hepatitis B virus ; Hepatitis B virus - isolation & purification ; Hepatoma ; Humans ; Instrument industry ; Liver Neoplasms - complications ; Liver Neoplasms - diagnosis ; Liver Neoplasms - epidemiology ; Male ; Middle Aged ; Neoplasm Recurrence, Local ; Physiological aspects ; Principal Component Analysis ; Prognosis ; Risk ; Risk factors</subject><ispartof>BMC genomics, 2015-04, Vol.16 (1), p.279-279, Article 279</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Kim et al.; licensee BioMed Central. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-df66e3569fff224df75341d0fc4d68b608cb2a1f268a35985e06ad5db3b1c47e3</citedby><cites>FETCH-LOGICAL-c500t-df66e3569fff224df75341d0fc4d68b608cb2a1f268a35985e06ad5db3b1c47e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448317/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448317/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25888140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Bu-Yeo</creatorcontrib><creatorcontrib>Choi, Dong Wook</creatorcontrib><creatorcontrib>Woo, Seon Rang</creatorcontrib><creatorcontrib>Park, Eun-Ran</creatorcontrib><creatorcontrib>Lee, Je-Geun</creatorcontrib><creatorcontrib>Kim, Su-Hyeon</creatorcontrib><creatorcontrib>Koo, Imhoi</creatorcontrib><creatorcontrib>Park, Sun-Hoo</creatorcontrib><creatorcontrib>Han, Chul Ju</creatorcontrib><creatorcontrib>Kim, Sang Bum</creatorcontrib><creatorcontrib>Yeom, Young Il</creatorcontrib><creatorcontrib>Yang, Suk-Jin</creatorcontrib><creatorcontrib>Yu, Ami</creatorcontrib><creatorcontrib>Lee, Jae Won</creatorcontrib><creatorcontrib>Jang, Ja June</creatorcontrib><creatorcontrib>Cho, Myung-Haing</creatorcontrib><creatorcontrib>Jeon, Won Kyung</creatorcontrib><creatorcontrib>Park, Young Nyun</creatorcontrib><creatorcontrib>Suh, Kyung-Suk</creatorcontrib><creatorcontrib>Lee, Kee-Ho</creatorcontrib><title>Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence.
By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm).
Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Carcinoma, Hepatocellular - complications</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Carcinoma, Hepatocellular - epidemiology</subject><subject>Cluster Analysis</subject><subject>Databases, Factual</subject><subject>Disease-Free Survival</subject><subject>Female</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Hepacivirus - isolation & purification</subject><subject>Hepatitis B - complications</subject><subject>Hepatitis B - diagnosis</subject><subject>Hepatitis B - virology</subject><subject>Hepatitis B virus</subject><subject>Hepatitis B virus - isolation & purification</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Instrument industry</subject><subject>Liver Neoplasms - complications</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Liver Neoplasms - epidemiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neoplasm Recurrence, Local</subject><subject>Physiological aspects</subject><subject>Principal Component Analysis</subject><subject>Prognosis</subject><subject>Risk</subject><subject>Risk factors</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkltr3DAQhUVpaS7tD-hLMfSleXCq0c3KSyENvQQChbR5FrI82lWxra1kbzf_vlqchiwUPWhG850DIw4hb4CeA2j1IQPTStQUZA2iYfXuGTkuBdQMlHj-pD4iJzn_ohQazeRLcsSk1hoEPSZ3t-jmlHB0WNucowt2wq7a2Gn9x97nKozVGksXppCrT9U2pDnXm5hLv8VlFB32_dzbVDmbXBjjYF-RF972GV8_3Kfk7svnn1ff6pvvX6-vLm9qJymd6s4rhVyqC-89Y6LzjeQCOuqd6JRuFdWuZRY8U9pyeaElUmU72bW8BSca5Kfk4-K7mdsBO4fjlGxvNikMNt2baIM5nIxhbVZxa4QQmkNTDN4_GKT4e8Y8mSHk_T52xDhnA0oLwYFxVdB3C7qyPZow-lgc3R43l1IAV4JzXajz_1DldDgEF0f0obwfCM4OBIWZcDet7Jyzuf5xe8jCwroUc07oHzcFavaJMEsiTEmE2SfC7Irm7dMvelT8iwD_C8MDsls</recordid><startdate>20150410</startdate><enddate>20150410</enddate><creator>Kim, Bu-Yeo</creator><creator>Choi, Dong Wook</creator><creator>Woo, Seon Rang</creator><creator>Park, Eun-Ran</creator><creator>Lee, Je-Geun</creator><creator>Kim, Su-Hyeon</creator><creator>Koo, Imhoi</creator><creator>Park, Sun-Hoo</creator><creator>Han, Chul Ju</creator><creator>Kim, Sang Bum</creator><creator>Yeom, Young Il</creator><creator>Yang, Suk-Jin</creator><creator>Yu, Ami</creator><creator>Lee, Jae Won</creator><creator>Jang, Ja June</creator><creator>Cho, Myung-Haing</creator><creator>Jeon, Won Kyung</creator><creator>Park, Young Nyun</creator><creator>Suh, Kyung-Suk</creator><creator>Lee, Kee-Ho</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150410</creationdate><title>Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma</title><author>Kim, Bu-Yeo ; Choi, Dong Wook ; Woo, Seon Rang ; Park, Eun-Ran ; Lee, Je-Geun ; Kim, Su-Hyeon ; Koo, Imhoi ; Park, Sun-Hoo ; Han, Chul Ju ; Kim, Sang Bum ; Yeom, Young Il ; Yang, Suk-Jin ; Yu, Ami ; Lee, Jae Won ; Jang, Ja June ; Cho, Myung-Haing ; Jeon, Won Kyung ; Park, Young Nyun ; Suh, Kyung-Suk ; Lee, Kee-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-df66e3569fff224df75341d0fc4d68b608cb2a1f268a35985e06ad5db3b1c47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Carcinoma, Hepatocellular - complications</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Carcinoma, Hepatocellular - epidemiology</topic><topic>Cluster Analysis</topic><topic>Databases, Factual</topic><topic>Disease-Free Survival</topic><topic>Female</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Hepacivirus - isolation & purification</topic><topic>Hepatitis B - complications</topic><topic>Hepatitis B - diagnosis</topic><topic>Hepatitis B - virology</topic><topic>Hepatitis B virus</topic><topic>Hepatitis B virus - isolation & purification</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Instrument industry</topic><topic>Liver Neoplasms - complications</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Liver Neoplasms - epidemiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neoplasm Recurrence, Local</topic><topic>Physiological aspects</topic><topic>Principal Component Analysis</topic><topic>Prognosis</topic><topic>Risk</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Bu-Yeo</creatorcontrib><creatorcontrib>Choi, Dong Wook</creatorcontrib><creatorcontrib>Woo, Seon Rang</creatorcontrib><creatorcontrib>Park, Eun-Ran</creatorcontrib><creatorcontrib>Lee, Je-Geun</creatorcontrib><creatorcontrib>Kim, Su-Hyeon</creatorcontrib><creatorcontrib>Koo, Imhoi</creatorcontrib><creatorcontrib>Park, Sun-Hoo</creatorcontrib><creatorcontrib>Han, Chul Ju</creatorcontrib><creatorcontrib>Kim, Sang Bum</creatorcontrib><creatorcontrib>Yeom, Young Il</creatorcontrib><creatorcontrib>Yang, Suk-Jin</creatorcontrib><creatorcontrib>Yu, Ami</creatorcontrib><creatorcontrib>Lee, Jae Won</creatorcontrib><creatorcontrib>Jang, Ja June</creatorcontrib><creatorcontrib>Cho, Myung-Haing</creatorcontrib><creatorcontrib>Jeon, Won Kyung</creatorcontrib><creatorcontrib>Park, Young Nyun</creatorcontrib><creatorcontrib>Suh, Kyung-Suk</creatorcontrib><creatorcontrib>Lee, Kee-Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Bu-Yeo</au><au>Choi, Dong Wook</au><au>Woo, Seon Rang</au><au>Park, Eun-Ran</au><au>Lee, Je-Geun</au><au>Kim, Su-Hyeon</au><au>Koo, Imhoi</au><au>Park, Sun-Hoo</au><au>Han, Chul Ju</au><au>Kim, Sang Bum</au><au>Yeom, Young Il</au><au>Yang, Suk-Jin</au><au>Yu, Ami</au><au>Lee, Jae Won</au><au>Jang, Ja June</au><au>Cho, Myung-Haing</au><au>Jeon, Won Kyung</au><au>Park, Young Nyun</au><au>Suh, Kyung-Suk</au><au>Lee, Kee-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2015-04-10</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>279</spage><epage>279</epage><pages>279-279</pages><artnum>279</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence.
By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm).
Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25888140</pmid><doi>10.1186/s12864-015-1472-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2015-04, Vol.16 (1), p.279-279, Article 279 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4448317 |
source | MEDLINE; Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Adult Algorithms Analysis Carcinoma, Hepatocellular - complications Carcinoma, Hepatocellular - diagnosis Carcinoma, Hepatocellular - epidemiology Cluster Analysis Databases, Factual Disease-Free Survival Female Genes Genetic aspects Hepacivirus - isolation & purification Hepatitis B - complications Hepatitis B - diagnosis Hepatitis B - virology Hepatitis B virus Hepatitis B virus - isolation & purification Hepatoma Humans Instrument industry Liver Neoplasms - complications Liver Neoplasms - diagnosis Liver Neoplasms - epidemiology Male Middle Aged Neoplasm Recurrence, Local Physiological aspects Principal Component Analysis Prognosis Risk Risk factors |
title | Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrence-associated%20pathways%20in%20hepatitis%20B%20virus-positive%20hepatocellular%20carcinoma&rft.jtitle=BMC%20genomics&rft.au=Kim,%20Bu-Yeo&rft.date=2015-04-10&rft.volume=16&rft.issue=1&rft.spage=279&rft.epage=279&rft.pages=279-279&rft.artnum=279&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-015-1472-x&rft_dat=%3Cgale_pubme%3EA541364338%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684431236&rft_id=info:pmid/25888140&rft_galeid=A541364338&rfr_iscdi=true |