The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks

DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2015-05, Vol.43 (10), p.5017-5032
Hauptverfasser: Ngo, Greg H P, Lydall, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5032
container_issue 10
container_start_page 5017
container_title Nucleic acids research
container_volume 43
creator Ngo, Greg H P
Lydall, David
description DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.
doi_str_mv 10.1093/nar/gkv409
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701492588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</originalsourceid><addsrcrecordid>eNpVkM9LwzAYhoMobk4v_gGSowh1SZO0yUUY8ycMPbh7SJN0q2ubmrQD_3sjm0NP7-F7eL-XB4BLjG4xEmTaKj9dbbYUiSMwxiRLEyqy9BiMEUEswYjyETgL4QMhTDGjp2CUMpEylpMxWCzXFooEJxjqtdWbzlVtD3Wtmg5q57ypWtXbAL0NVveVa6Hq4f3rDBo3FLWFofeqNbDwVm3COTgpVR3sxT4n4P3xYTl_ThZvTy_z2SLRNM_7hGCeMatKgoUQCqsyVSrTjBakzAhSXPAYjNO0oKUotNEmS3lhDDZaGE0m4G7X2g1FY422bdxQy85XjfJf0qlK_r-01Vqu3FZSSjNK81hwvS_w7nOwoZdNFbSta9VaNwSJ8ygqCuI8ojc7VHsXgrfl4Q1G8ke-jPLlTn6Er_4OO6C_tsk3JD2Bsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701492588</pqid></control><display><type>article</type><title>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ngo, Greg H P ; Lydall, David</creator><creatorcontrib>Ngo, Greg H P ; Lydall, David</creatorcontrib><description>DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv409</identifier><identifier>PMID: 25925573</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Cycle Proteins - physiology ; DNA Breaks, Double-Stranded ; DNA Helicases - metabolism ; DNA Repair ; DNA, Fungal - metabolism ; Exodeoxyribonucleases - metabolism ; Gene Deletion ; Genome Integrity, Repair and ; Protein Binding ; RecQ Helicases - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Telomere - metabolism</subject><ispartof>Nucleic acids research, 2015-05, Vol.43 (10), p.5017-5032</ispartof><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</citedby><cites>FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446447/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446447/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25925573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngo, Greg H P</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><title>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.</description><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Cycle Proteins - physiology</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Repair</subject><subject>DNA, Fungal - metabolism</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Gene Deletion</subject><subject>Genome Integrity, Repair and</subject><subject>Protein Binding</subject><subject>RecQ Helicases - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Telomere - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM9LwzAYhoMobk4v_gGSowh1SZO0yUUY8ycMPbh7SJN0q2ubmrQD_3sjm0NP7-F7eL-XB4BLjG4xEmTaKj9dbbYUiSMwxiRLEyqy9BiMEUEswYjyETgL4QMhTDGjp2CUMpEylpMxWCzXFooEJxjqtdWbzlVtD3Wtmg5q57ypWtXbAL0NVveVa6Hq4f3rDBo3FLWFofeqNbDwVm3COTgpVR3sxT4n4P3xYTl_ThZvTy_z2SLRNM_7hGCeMatKgoUQCqsyVSrTjBakzAhSXPAYjNO0oKUotNEmS3lhDDZaGE0m4G7X2g1FY422bdxQy85XjfJf0qlK_r-01Vqu3FZSSjNK81hwvS_w7nOwoZdNFbSta9VaNwSJ8ygqCuI8ojc7VHsXgrfl4Q1G8ke-jPLlTn6Er_4OO6C_tsk3JD2Bsg</recordid><startdate>20150526</startdate><enddate>20150526</enddate><creator>Ngo, Greg H P</creator><creator>Lydall, David</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150526</creationdate><title>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</title><author>Ngo, Greg H P ; Lydall, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Cycle Proteins - physiology</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Repair</topic><topic>DNA, Fungal - metabolism</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Gene Deletion</topic><topic>Genome Integrity, Repair and</topic><topic>Protein Binding</topic><topic>RecQ Helicases - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Telomere - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngo, Greg H P</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo, Greg H P</au><au>Lydall, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2015-05-26</date><risdate>2015</risdate><volume>43</volume><issue>10</issue><spage>5017</spage><epage>5032</epage><pages>5017-5032</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25925573</pmid><doi>10.1093/nar/gkv409</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2015-05, Vol.43 (10), p.5017-5032
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446447
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Cycle Proteins - physiology
DNA Breaks, Double-Stranded
DNA Helicases - metabolism
DNA Repair
DNA, Fungal - metabolism
Exodeoxyribonucleases - metabolism
Gene Deletion
Genome Integrity, Repair and
Protein Binding
RecQ Helicases - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Telomere - metabolism
title The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%209-1-1%20checkpoint%20clamp%20coordinates%20resection%20at%20DNA%20double%20strand%20breaks&rft.jtitle=Nucleic%20acids%20research&rft.au=Ngo,%20Greg%20H%20P&rft.date=2015-05-26&rft.volume=43&rft.issue=10&rft.spage=5017&rft.epage=5032&rft.pages=5017-5032&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv409&rft_dat=%3Cproquest_pubme%3E1701492588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701492588&rft_id=info:pmid/25925573&rfr_iscdi=true