The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resecti...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2015-05, Vol.43 (10), p.5017-5032 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5032 |
---|---|
container_issue | 10 |
container_start_page | 5017 |
container_title | Nucleic acids research |
container_volume | 43 |
creator | Ngo, Greg H P Lydall, David |
description | DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells. |
doi_str_mv | 10.1093/nar/gkv409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701492588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</originalsourceid><addsrcrecordid>eNpVkM9LwzAYhoMobk4v_gGSowh1SZO0yUUY8ycMPbh7SJN0q2ubmrQD_3sjm0NP7-F7eL-XB4BLjG4xEmTaKj9dbbYUiSMwxiRLEyqy9BiMEUEswYjyETgL4QMhTDGjp2CUMpEylpMxWCzXFooEJxjqtdWbzlVtD3Wtmg5q57ypWtXbAL0NVveVa6Hq4f3rDBo3FLWFofeqNbDwVm3COTgpVR3sxT4n4P3xYTl_ThZvTy_z2SLRNM_7hGCeMatKgoUQCqsyVSrTjBakzAhSXPAYjNO0oKUotNEmS3lhDDZaGE0m4G7X2g1FY422bdxQy85XjfJf0qlK_r-01Vqu3FZSSjNK81hwvS_w7nOwoZdNFbSta9VaNwSJ8ygqCuI8ojc7VHsXgrfl4Q1G8ke-jPLlTn6Er_4OO6C_tsk3JD2Bsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701492588</pqid></control><display><type>article</type><title>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ngo, Greg H P ; Lydall, David</creator><creatorcontrib>Ngo, Greg H P ; Lydall, David</creatorcontrib><description>DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv409</identifier><identifier>PMID: 25925573</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Cycle Proteins - physiology ; DNA Breaks, Double-Stranded ; DNA Helicases - metabolism ; DNA Repair ; DNA, Fungal - metabolism ; Exodeoxyribonucleases - metabolism ; Gene Deletion ; Genome Integrity, Repair and ; Protein Binding ; RecQ Helicases - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Telomere - metabolism</subject><ispartof>Nucleic acids research, 2015-05, Vol.43 (10), p.5017-5032</ispartof><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</citedby><cites>FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446447/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446447/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25925573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngo, Greg H P</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><title>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.</description><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Cycle Proteins - physiology</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Repair</subject><subject>DNA, Fungal - metabolism</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Gene Deletion</subject><subject>Genome Integrity, Repair and</subject><subject>Protein Binding</subject><subject>RecQ Helicases - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Telomere - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM9LwzAYhoMobk4v_gGSowh1SZO0yUUY8ycMPbh7SJN0q2ubmrQD_3sjm0NP7-F7eL-XB4BLjG4xEmTaKj9dbbYUiSMwxiRLEyqy9BiMEUEswYjyETgL4QMhTDGjp2CUMpEylpMxWCzXFooEJxjqtdWbzlVtD3Wtmg5q57ypWtXbAL0NVveVa6Hq4f3rDBo3FLWFofeqNbDwVm3COTgpVR3sxT4n4P3xYTl_ThZvTy_z2SLRNM_7hGCeMatKgoUQCqsyVSrTjBakzAhSXPAYjNO0oKUotNEmS3lhDDZaGE0m4G7X2g1FY422bdxQy85XjfJf0qlK_r-01Vqu3FZSSjNK81hwvS_w7nOwoZdNFbSta9VaNwSJ8ygqCuI8ojc7VHsXgrfl4Q1G8ke-jPLlTn6Er_4OO6C_tsk3JD2Bsg</recordid><startdate>20150526</startdate><enddate>20150526</enddate><creator>Ngo, Greg H P</creator><creator>Lydall, David</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150526</creationdate><title>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</title><author>Ngo, Greg H P ; Lydall, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-31865eaf31999a1af2aa6c54b3f630a8986305842b4f9bcdcd628bdd1dc9dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Cycle Proteins - physiology</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Repair</topic><topic>DNA, Fungal - metabolism</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Gene Deletion</topic><topic>Genome Integrity, Repair and</topic><topic>Protein Binding</topic><topic>RecQ Helicases - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Telomere - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngo, Greg H P</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo, Greg H P</au><au>Lydall, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2015-05-26</date><risdate>2015</risdate><volume>43</volume><issue>10</issue><spage>5017</spage><epage>5032</epage><pages>5017-5032</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25925573</pmid><doi>10.1093/nar/gkv409</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2015-05, Vol.43 (10), p.5017-5032 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446447 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Cycle Proteins - physiology DNA Breaks, Double-Stranded DNA Helicases - metabolism DNA Repair DNA, Fungal - metabolism Exodeoxyribonucleases - metabolism Gene Deletion Genome Integrity, Repair and Protein Binding RecQ Helicases - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Telomere - metabolism |
title | The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%209-1-1%20checkpoint%20clamp%20coordinates%20resection%20at%20DNA%20double%20strand%20breaks&rft.jtitle=Nucleic%20acids%20research&rft.au=Ngo,%20Greg%20H%20P&rft.date=2015-05-26&rft.volume=43&rft.issue=10&rft.spage=5017&rft.epage=5032&rft.pages=5017-5032&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv409&rft_dat=%3Cproquest_pubme%3E1701492588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701492588&rft_id=info:pmid/25925573&rfr_iscdi=true |