On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, m...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2015-05, Vol.43 (10), p.5171-5181 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5181 |
---|---|
container_issue | 10 |
container_start_page | 5171 |
container_title | Nucleic acids research |
container_volume | 43 |
creator | Riml, Christian Glasner, Heidelinde Rodgers, M T Micura, Ronald Breuker, Kathrin |
description | Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage. |
doi_str_mv | 10.1093/nar/gkv288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1684436067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cef2f2d1f15e942618fd5119a533938450aaaf38cea05da3f3be7e1430c9899e3</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRtH5c_AGSowixO7ubdPciSPELREH0vEw2s21skq3ZtuC_N6VV9ORhmMM8887Hy9gp8EvgRg5b7IaT2UpovcMGIHORKpOLXTbgkmcpcKUP2GGM75yDgkztswORGa5yCQP28twmiyklDbkptlVskuCTl6frZD4NsY-yorigLinQzYrQUuJqwhVOKKk2jVhEah2t22KoV9QujtmexzrSyTYfsbfbm9fxffr4fPcwvn5MnQJYpI688KIEDxkZJXLQvswADGZSGqlVxhHRS-0IeVai9LKgEYGS3BltDMkjdrXRnS-LhkrXj-6wtvOuarD7tAEr-7fSVlM7CSurlMqVEL3A-VagCx_L_k7bVNFRXWNLYRktjPqH6X7Z0f9orpWSOc_X6MUGdV2IsSP_sxFwu_bL9n7ZjV89fPb7hh_02yD5BfdXkoI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684436067</pqid></control><display><type>article</type><title>On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Riml, Christian ; Glasner, Heidelinde ; Rodgers, M T ; Micura, Ronald ; Breuker, Kathrin</creator><creatorcontrib>Riml, Christian ; Glasner, Heidelinde ; Rodgers, M T ; Micura, Ronald ; Breuker, Kathrin</creatorcontrib><description>Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv288</identifier><identifier>PMID: 25904631</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Hydrogen Bonding ; Ions - chemistry ; Protons ; RNA ; RNA - chemistry ; RNA Cleavage ; Spectrometry, Mass, Electrospray Ionization</subject><ispartof>Nucleic acids research, 2015-05, Vol.43 (10), p.5171-5181</ispartof><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cef2f2d1f15e942618fd5119a533938450aaaf38cea05da3f3be7e1430c9899e3</citedby><cites>FETCH-LOGICAL-c411t-cef2f2d1f15e942618fd5119a533938450aaaf38cea05da3f3be7e1430c9899e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446422/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446422/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25904631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riml, Christian</creatorcontrib><creatorcontrib>Glasner, Heidelinde</creatorcontrib><creatorcontrib>Rodgers, M T</creatorcontrib><creatorcontrib>Micura, Ronald</creatorcontrib><creatorcontrib>Breuker, Kathrin</creatorcontrib><title>On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.</description><subject>Hydrogen Bonding</subject><subject>Ions - chemistry</subject><subject>Protons</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA Cleavage</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1Lw0AQhhdRtH5c_AGSowixO7ubdPciSPELREH0vEw2s21skq3ZtuC_N6VV9ORhmMM8887Hy9gp8EvgRg5b7IaT2UpovcMGIHORKpOLXTbgkmcpcKUP2GGM75yDgkztswORGa5yCQP28twmiyklDbkptlVskuCTl6frZD4NsY-yorigLinQzYrQUuJqwhVOKKk2jVhEah2t22KoV9QujtmexzrSyTYfsbfbm9fxffr4fPcwvn5MnQJYpI688KIEDxkZJXLQvswADGZSGqlVxhHRS-0IeVai9LKgEYGS3BltDMkjdrXRnS-LhkrXj-6wtvOuarD7tAEr-7fSVlM7CSurlMqVEL3A-VagCx_L_k7bVNFRXWNLYRktjPqH6X7Z0f9orpWSOc_X6MUGdV2IsSP_sxFwu_bL9n7ZjV89fPb7hh_02yD5BfdXkoI</recordid><startdate>20150526</startdate><enddate>20150526</enddate><creator>Riml, Christian</creator><creator>Glasner, Heidelinde</creator><creator>Rodgers, M T</creator><creator>Micura, Ronald</creator><creator>Breuker, Kathrin</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150526</creationdate><title>On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent</title><author>Riml, Christian ; Glasner, Heidelinde ; Rodgers, M T ; Micura, Ronald ; Breuker, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cef2f2d1f15e942618fd5119a533938450aaaf38cea05da3f3be7e1430c9899e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Hydrogen Bonding</topic><topic>Ions - chemistry</topic><topic>Protons</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA Cleavage</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riml, Christian</creatorcontrib><creatorcontrib>Glasner, Heidelinde</creatorcontrib><creatorcontrib>Rodgers, M T</creatorcontrib><creatorcontrib>Micura, Ronald</creatorcontrib><creatorcontrib>Breuker, Kathrin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riml, Christian</au><au>Glasner, Heidelinde</au><au>Rodgers, M T</au><au>Micura, Ronald</au><au>Breuker, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2015-05-26</date><risdate>2015</risdate><volume>43</volume><issue>10</issue><spage>5171</spage><epage>5181</epage><pages>5171-5181</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25904631</pmid><doi>10.1093/nar/gkv288</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2015-05, Vol.43 (10), p.5171-5181 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446422 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Hydrogen Bonding Ions - chemistry Protons RNA RNA - chemistry RNA Cleavage Spectrometry, Mass, Electrospray Ionization |
title | On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mechanism%20of%20RNA%20phosphodiester%20backbone%20cleavage%20in%20the%20absence%20of%20solvent&rft.jtitle=Nucleic%20acids%20research&rft.au=Riml,%20Christian&rft.date=2015-05-26&rft.volume=43&rft.issue=10&rft.spage=5171&rft.epage=5181&rft.pages=5171-5181&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv288&rft_dat=%3Cproquest_pubme%3E1684436067%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684436067&rft_id=info:pmid/25904631&rfr_iscdi=true |