An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity

Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. In this paper, the authors reveal a somatostatin-expressing inhibitory neuron-driven corti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2015-06, Vol.18 (6), p.892-902
Hauptverfasser: Chen, Naiyan, Sugihara, Hiroki, Sur, Mriganka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 902
container_issue 6
container_start_page 892
container_title Nature neuroscience
container_volume 18
creator Chen, Naiyan
Sugihara, Hiroki
Sur, Mriganka
description Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. In this paper, the authors reveal a somatostatin-expressing inhibitory neuron-driven cortical circuit that mediates this change in the temporal structure of cortical dynamics. Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.
doi_str_mv 10.1038/nn.4002
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417186868</galeid><sourcerecordid>A417186868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-de62f75706e62a4f3de3d81f2b4a796027289d1edc871c0bfbbfac6218231d5e3</originalsourceid><addsrcrecordid>eNqFkt9rFDEQxxdRbK3ifyALPqgPe-bHbrL7IhzFH4WCoPY5ZJPJNWUvOZPs4f33ztna9oog85Ah85kvyXemql5SsqCE9-9DWLSEsEfVMe1a0VDJxGPMySAbwTpxVD3L-YoQIrt-eFodsW5ATsrj6mIZam2g7CZzGScfoNGm-K0uYOu1Nykan8zsS22T30KuC6w3MemptrugEch1dLWJqXiDl396fdk9r544PWV4cXOeVBefPv44_dKcf_18dro8b4zgpDQWBHOyk0RgolvHLXDbU8fGVstBECZZP1gK1vSSGjK6cXTaCEZ7xqntgJ9UH651N_O4RgxCwbepTfJrnXYqaq8OK8FfqlXcqrZtBW0FCry9EUjx5wy5qLXPBqZJB4hzVlRK3nNJOfk_KnreSd5KhujrB-hVnFNAJ1BQCDbgjLo7aqUnUD64iE80e1G1bKmkvcBAavEPCsMC2h8DOI_3Bw3vDhqQKfCrrPScszr7_u2QfXPN4qBzTuBuraNE7RdLhaD2i4Xkq_tO33J_N-nOnoylsIJ0788PtH4DbrjU6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766295465</pqid></control><display><type>article</type><title>An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Naiyan ; Sugihara, Hiroki ; Sur, Mriganka</creator><creatorcontrib>Chen, Naiyan ; Sugihara, Hiroki ; Sur, Mriganka</creatorcontrib><description>Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. In this paper, the authors reveal a somatostatin-expressing inhibitory neuron-driven cortical circuit that mediates this change in the temporal structure of cortical dynamics. Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4002</identifier><identifier>PMID: 25915477</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/51 ; 14/19 ; 14/63 ; 14/69 ; 631/378/2613/1875 ; 631/378/3920 ; 64/110 ; 82/51 ; 9/74 ; Acetylcholine ; Acetylcholine - pharmacology ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Cerebral Cortex - drug effects ; Cortical Synchronization - drug effects ; Excitatory Postsynaptic Potentials - drug effects ; Genetic aspects ; Information processing ; Interneurons - drug effects ; Mice ; Mice, Inbred C57BL ; Nerve Net - drug effects ; Neurobiology ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Neurosciences ; Optogenetics ; Parasympathetic Nervous System - drug effects ; Parvalbumins - metabolism ; Photic Stimulation ; Physiological aspects ; Pyramidal Cells - drug effects ; Somatostatin - physiology ; Vasoactive Intestinal Peptide - metabolism ; Vasoactive intestinal peptides ; Visual cortex ; Visual Pathways - drug effects</subject><ispartof>Nature neuroscience, 2015-06, Vol.18 (6), p.892-902</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-de62f75706e62a4f3de3d81f2b4a796027289d1edc871c0bfbbfac6218231d5e3</citedby><cites>FETCH-LOGICAL-c630t-de62f75706e62a4f3de3d81f2b4a796027289d1edc871c0bfbbfac6218231d5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4002$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4002$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25915477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Naiyan</creatorcontrib><creatorcontrib>Sugihara, Hiroki</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><title>An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. In this paper, the authors reveal a somatostatin-expressing inhibitory neuron-driven cortical circuit that mediates this change in the temporal structure of cortical dynamics. Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.</description><subject>13/51</subject><subject>14/19</subject><subject>14/63</subject><subject>14/69</subject><subject>631/378/2613/1875</subject><subject>631/378/3920</subject><subject>64/110</subject><subject>82/51</subject><subject>9/74</subject><subject>Acetylcholine</subject><subject>Acetylcholine - pharmacology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Cerebral Cortex - drug effects</subject><subject>Cortical Synchronization - drug effects</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Genetic aspects</subject><subject>Information processing</subject><subject>Interneurons - drug effects</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Net - drug effects</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Optogenetics</subject><subject>Parasympathetic Nervous System - drug effects</subject><subject>Parvalbumins - metabolism</subject><subject>Photic Stimulation</subject><subject>Physiological aspects</subject><subject>Pyramidal Cells - drug effects</subject><subject>Somatostatin - physiology</subject><subject>Vasoactive Intestinal Peptide - metabolism</subject><subject>Vasoactive intestinal peptides</subject><subject>Visual cortex</subject><subject>Visual Pathways - drug effects</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt9rFDEQxxdRbK3ifyALPqgPe-bHbrL7IhzFH4WCoPY5ZJPJNWUvOZPs4f33ztna9oog85Ah85kvyXemql5SsqCE9-9DWLSEsEfVMe1a0VDJxGPMySAbwTpxVD3L-YoQIrt-eFodsW5ATsrj6mIZam2g7CZzGScfoNGm-K0uYOu1Nykan8zsS22T30KuC6w3MemptrugEch1dLWJqXiDl396fdk9r544PWV4cXOeVBefPv44_dKcf_18dro8b4zgpDQWBHOyk0RgolvHLXDbU8fGVstBECZZP1gK1vSSGjK6cXTaCEZ7xqntgJ9UH651N_O4RgxCwbepTfJrnXYqaq8OK8FfqlXcqrZtBW0FCry9EUjx5wy5qLXPBqZJB4hzVlRK3nNJOfk_KnreSd5KhujrB-hVnFNAJ1BQCDbgjLo7aqUnUD64iE80e1G1bKmkvcBAavEPCsMC2h8DOI_3Bw3vDhqQKfCrrPScszr7_u2QfXPN4qBzTuBuraNE7RdLhaD2i4Xkq_tO33J_N-nOnoylsIJ0788PtH4DbrjU6w</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Chen, Naiyan</creator><creator>Sugihara, Hiroki</creator><creator>Sur, Mriganka</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150601</creationdate><title>An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity</title><author>Chen, Naiyan ; Sugihara, Hiroki ; Sur, Mriganka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-de62f75706e62a4f3de3d81f2b4a796027289d1edc871c0bfbbfac6218231d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/51</topic><topic>14/19</topic><topic>14/63</topic><topic>14/69</topic><topic>631/378/2613/1875</topic><topic>631/378/3920</topic><topic>64/110</topic><topic>82/51</topic><topic>9/74</topic><topic>Acetylcholine</topic><topic>Acetylcholine - pharmacology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Cerebral Cortex - drug effects</topic><topic>Cortical Synchronization - drug effects</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Genetic aspects</topic><topic>Information processing</topic><topic>Interneurons - drug effects</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Net - drug effects</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Optogenetics</topic><topic>Parasympathetic Nervous System - drug effects</topic><topic>Parvalbumins - metabolism</topic><topic>Photic Stimulation</topic><topic>Physiological aspects</topic><topic>Pyramidal Cells - drug effects</topic><topic>Somatostatin - physiology</topic><topic>Vasoactive Intestinal Peptide - metabolism</topic><topic>Vasoactive intestinal peptides</topic><topic>Visual cortex</topic><topic>Visual Pathways - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Naiyan</creatorcontrib><creatorcontrib>Sugihara, Hiroki</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Naiyan</au><au>Sugihara, Hiroki</au><au>Sur, Mriganka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>18</volume><issue>6</issue><spage>892</spage><epage>902</epage><pages>892-902</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. In this paper, the authors reveal a somatostatin-expressing inhibitory neuron-driven cortical circuit that mediates this change in the temporal structure of cortical dynamics. Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25915477</pmid><doi>10.1038/nn.4002</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2015-06, Vol.18 (6), p.892-902
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4446146
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13/51
14/19
14/63
14/69
631/378/2613/1875
631/378/3920
64/110
82/51
9/74
Acetylcholine
Acetylcholine - pharmacology
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedicine
Cerebral Cortex - drug effects
Cortical Synchronization - drug effects
Excitatory Postsynaptic Potentials - drug effects
Genetic aspects
Information processing
Interneurons - drug effects
Mice
Mice, Inbred C57BL
Nerve Net - drug effects
Neurobiology
Neurons
Neurons - drug effects
Neurons - metabolism
Neurosciences
Optogenetics
Parasympathetic Nervous System - drug effects
Parvalbumins - metabolism
Photic Stimulation
Physiological aspects
Pyramidal Cells - drug effects
Somatostatin - physiology
Vasoactive Intestinal Peptide - metabolism
Vasoactive intestinal peptides
Visual cortex
Visual Pathways - drug effects
title An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20acetylcholine-activated%20microcircuit%20drives%20temporal%20dynamics%20of%20cortical%20activity&rft.jtitle=Nature%20neuroscience&rft.au=Chen,%20Naiyan&rft.date=2015-06-01&rft.volume=18&rft.issue=6&rft.spage=892&rft.epage=902&rft.pages=892-902&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.4002&rft_dat=%3Cgale_pubme%3EA417186868%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766295465&rft_id=info:pmid/25915477&rft_galeid=A417186868&rfr_iscdi=true