Genetically Enhanced Lysozyme Evades a Pathogen Derived Inhibitory Protein

The accelerating spread of drug-resistant bacteria is creating demand for novel antibiotics. Bactericidal enzymes, such as human lysozyme (hLYZ), are interesting drug candidates due to their inherent catalytic nature and lack of susceptibility to the resistance mechanisms typically directed toward c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2015-04, Vol.10 (4), p.1110-1117
Hauptverfasser: Dostal, Sarah M, Fang, Yongliang, Guerrette, Jonathan C, Scanlon, Thomas C, Griswold, Karl E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1117
container_issue 4
container_start_page 1110
container_title ACS chemical biology
container_volume 10
creator Dostal, Sarah M
Fang, Yongliang
Guerrette, Jonathan C
Scanlon, Thomas C
Griswold, Karl E
description The accelerating spread of drug-resistant bacteria is creating demand for novel antibiotics. Bactericidal enzymes, such as human lysozyme (hLYZ), are interesting drug candidates due to their inherent catalytic nature and lack of susceptibility to the resistance mechanisms typically directed toward chemotherapeutics. However, natural antibacterial enzymes have their own limitations. For example, hLYZ is susceptible to pathogen derived inhibitory proteins, such as Escherichia coli Ivy. Here, we describe proof of concept studies demonstrating that hLYZ can be effectively redesigned to evade this potent lysozyme inhibitor. Large combinatorial libraries of hLYZ were analyzed using an innovative screening platform based on microbial coculture in hydrogel microdroplets. Isolated hLYZ variants were orders of magnitude less susceptible to E. coli Ivy yet retained high catalytic proficiency and inherent antibacterial activity. Interestingly, the engineered escape variants showed a disadvantageous increase in susceptibility to the related Ivy ortholog from Pseudomonas aeruginosa as well as an unrelated E. coli inhibitory protein, MliC. Thus, while we have achieved our original objective with respect to escaping E. coli Ivy, engineering hLYZ for broad-spectrum evasion of proteinaceous inhibitors will require consideration of the complex and varied determinants that underlie molecular recognition by these emerging virulence factors.
doi_str_mv 10.1021/cb500976y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4445656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1674203681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-7e95f2d1eb3412f59b991b26f263bf79c10a9027a161441e514e71f042de60eb3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlYP_gHZi6CHapLNR3MRpNaqFOxBzyG7O9umbJOabAvrr3eltSh4moF55p3hQeic4BuCKbnNM46xkqI5QF3COesPVCoP9z1VHXQS4wJjloqBOkYdygWWNJVd9DIGB7XNTVU1ycjNjcuhSCZN9J_NEpLRxhQQE5NMTT33M3DJAwS7aZFnN7eZrX1okmnwNVh3io5KU0U429Ueen8cvQ2f-pPX8fPwftI3DPO6L0HxkhYEspQRWnKVKUUyKkoq0qyUKifYKEylIYIwRoATBpKUmNECBG63euhum7taZ0socnB1MJVeBbs0odHeWP134uxcz_xGM8a44KINuNoFBP-xhljrpY05VJVx4NdREyEZxa0q0qLXWzQPPsYA5f4Mwfrbvd67b9mL33_tyR_ZLXC5BUwe9cKvg2s1_RP0BcPvi3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674203681</pqid></control><display><type>article</type><title>Genetically Enhanced Lysozyme Evades a Pathogen Derived Inhibitory Protein</title><source>MEDLINE</source><source>ACS Publications</source><creator>Dostal, Sarah M ; Fang, Yongliang ; Guerrette, Jonathan C ; Scanlon, Thomas C ; Griswold, Karl E</creator><creatorcontrib>Dostal, Sarah M ; Fang, Yongliang ; Guerrette, Jonathan C ; Scanlon, Thomas C ; Griswold, Karl E</creatorcontrib><description>The accelerating spread of drug-resistant bacteria is creating demand for novel antibiotics. Bactericidal enzymes, such as human lysozyme (hLYZ), are interesting drug candidates due to their inherent catalytic nature and lack of susceptibility to the resistance mechanisms typically directed toward chemotherapeutics. However, natural antibacterial enzymes have their own limitations. For example, hLYZ is susceptible to pathogen derived inhibitory proteins, such as Escherichia coli Ivy. Here, we describe proof of concept studies demonstrating that hLYZ can be effectively redesigned to evade this potent lysozyme inhibitor. Large combinatorial libraries of hLYZ were analyzed using an innovative screening platform based on microbial coculture in hydrogel microdroplets. Isolated hLYZ variants were orders of magnitude less susceptible to E. coli Ivy yet retained high catalytic proficiency and inherent antibacterial activity. Interestingly, the engineered escape variants showed a disadvantageous increase in susceptibility to the related Ivy ortholog from Pseudomonas aeruginosa as well as an unrelated E. coli inhibitory protein, MliC. Thus, while we have achieved our original objective with respect to escaping E. coli Ivy, engineering hLYZ for broad-spectrum evasion of proteinaceous inhibitors will require consideration of the complex and varied determinants that underlie molecular recognition by these emerging virulence factors.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/cb500976y</identifier><identifier>PMID: 25607237</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Bacterial Proteins - metabolism ; Carrier Proteins - metabolism ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - pathogenicity ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Humans ; Muramidase - genetics ; Muramidase - metabolism ; Peptide Library ; Protein Engineering - methods ; Pseudomonas aeruginosa - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Recombinant Proteins - pharmacology ; Structure-Activity Relationship</subject><ispartof>ACS chemical biology, 2015-04, Vol.10 (4), p.1110-1117</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-7e95f2d1eb3412f59b991b26f263bf79c10a9027a161441e514e71f042de60eb3</citedby><cites>FETCH-LOGICAL-a405t-7e95f2d1eb3412f59b991b26f263bf79c10a9027a161441e514e71f042de60eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cb500976y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cb500976y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25607237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dostal, Sarah M</creatorcontrib><creatorcontrib>Fang, Yongliang</creatorcontrib><creatorcontrib>Guerrette, Jonathan C</creatorcontrib><creatorcontrib>Scanlon, Thomas C</creatorcontrib><creatorcontrib>Griswold, Karl E</creatorcontrib><title>Genetically Enhanced Lysozyme Evades a Pathogen Derived Inhibitory Protein</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>The accelerating spread of drug-resistant bacteria is creating demand for novel antibiotics. Bactericidal enzymes, such as human lysozyme (hLYZ), are interesting drug candidates due to their inherent catalytic nature and lack of susceptibility to the resistance mechanisms typically directed toward chemotherapeutics. However, natural antibacterial enzymes have their own limitations. For example, hLYZ is susceptible to pathogen derived inhibitory proteins, such as Escherichia coli Ivy. Here, we describe proof of concept studies demonstrating that hLYZ can be effectively redesigned to evade this potent lysozyme inhibitor. Large combinatorial libraries of hLYZ were analyzed using an innovative screening platform based on microbial coculture in hydrogel microdroplets. Isolated hLYZ variants were orders of magnitude less susceptible to E. coli Ivy yet retained high catalytic proficiency and inherent antibacterial activity. Interestingly, the engineered escape variants showed a disadvantageous increase in susceptibility to the related Ivy ortholog from Pseudomonas aeruginosa as well as an unrelated E. coli inhibitory protein, MliC. Thus, while we have achieved our original objective with respect to escaping E. coli Ivy, engineering hLYZ for broad-spectrum evasion of proteinaceous inhibitors will require consideration of the complex and varied determinants that underlie molecular recognition by these emerging virulence factors.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacterial Proteins - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - pathogenicity</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Humans</subject><subject>Muramidase - genetics</subject><subject>Muramidase - metabolism</subject><subject>Peptide Library</subject><subject>Protein Engineering - methods</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Structure-Activity Relationship</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotlYP_gHZi6CHapLNR3MRpNaqFOxBzyG7O9umbJOabAvrr3eltSh4moF55p3hQeic4BuCKbnNM46xkqI5QF3COesPVCoP9z1VHXQS4wJjloqBOkYdygWWNJVd9DIGB7XNTVU1ycjNjcuhSCZN9J_NEpLRxhQQE5NMTT33M3DJAwS7aZFnN7eZrX1okmnwNVh3io5KU0U429Ueen8cvQ2f-pPX8fPwftI3DPO6L0HxkhYEspQRWnKVKUUyKkoq0qyUKifYKEylIYIwRoATBpKUmNECBG63euhum7taZ0socnB1MJVeBbs0odHeWP134uxcz_xGM8a44KINuNoFBP-xhljrpY05VJVx4NdREyEZxa0q0qLXWzQPPsYA5f4Mwfrbvd67b9mL33_tyR_ZLXC5BUwe9cKvg2s1_RP0BcPvi3c</recordid><startdate>20150417</startdate><enddate>20150417</enddate><creator>Dostal, Sarah M</creator><creator>Fang, Yongliang</creator><creator>Guerrette, Jonathan C</creator><creator>Scanlon, Thomas C</creator><creator>Griswold, Karl E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150417</creationdate><title>Genetically Enhanced Lysozyme Evades a Pathogen Derived Inhibitory Protein</title><author>Dostal, Sarah M ; Fang, Yongliang ; Guerrette, Jonathan C ; Scanlon, Thomas C ; Griswold, Karl E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-7e95f2d1eb3412f59b991b26f263bf79c10a9027a161441e514e71f042de60eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacterial Proteins - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - pathogenicity</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Humans</topic><topic>Muramidase - genetics</topic><topic>Muramidase - metabolism</topic><topic>Peptide Library</topic><topic>Protein Engineering - methods</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dostal, Sarah M</creatorcontrib><creatorcontrib>Fang, Yongliang</creatorcontrib><creatorcontrib>Guerrette, Jonathan C</creatorcontrib><creatorcontrib>Scanlon, Thomas C</creatorcontrib><creatorcontrib>Griswold, Karl E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dostal, Sarah M</au><au>Fang, Yongliang</au><au>Guerrette, Jonathan C</au><au>Scanlon, Thomas C</au><au>Griswold, Karl E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically Enhanced Lysozyme Evades a Pathogen Derived Inhibitory Protein</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2015-04-17</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>1110</spage><epage>1117</epage><pages>1110-1117</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>The accelerating spread of drug-resistant bacteria is creating demand for novel antibiotics. Bactericidal enzymes, such as human lysozyme (hLYZ), are interesting drug candidates due to their inherent catalytic nature and lack of susceptibility to the resistance mechanisms typically directed toward chemotherapeutics. However, natural antibacterial enzymes have their own limitations. For example, hLYZ is susceptible to pathogen derived inhibitory proteins, such as Escherichia coli Ivy. Here, we describe proof of concept studies demonstrating that hLYZ can be effectively redesigned to evade this potent lysozyme inhibitor. Large combinatorial libraries of hLYZ were analyzed using an innovative screening platform based on microbial coculture in hydrogel microdroplets. Isolated hLYZ variants were orders of magnitude less susceptible to E. coli Ivy yet retained high catalytic proficiency and inherent antibacterial activity. Interestingly, the engineered escape variants showed a disadvantageous increase in susceptibility to the related Ivy ortholog from Pseudomonas aeruginosa as well as an unrelated E. coli inhibitory protein, MliC. Thus, while we have achieved our original objective with respect to escaping E. coli Ivy, engineering hLYZ for broad-spectrum evasion of proteinaceous inhibitors will require consideration of the complex and varied determinants that underlie molecular recognition by these emerging virulence factors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25607237</pmid><doi>10.1021/cb500976y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2015-04, Vol.10 (4), p.1110-1117
issn 1554-8929
1554-8937
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4445656
source MEDLINE; ACS Publications
subjects Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Bacterial Proteins - metabolism
Carrier Proteins - metabolism
Escherichia coli - drug effects
Escherichia coli - genetics
Escherichia coli - pathogenicity
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Humans
Muramidase - genetics
Muramidase - metabolism
Peptide Library
Protein Engineering - methods
Pseudomonas aeruginosa - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Recombinant Proteins - pharmacology
Structure-Activity Relationship
title Genetically Enhanced Lysozyme Evades a Pathogen Derived Inhibitory Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20Enhanced%20Lysozyme%20Evades%20a%20Pathogen%20Derived%20Inhibitory%20Protein&rft.jtitle=ACS%20chemical%20biology&rft.au=Dostal,%20Sarah%20M&rft.date=2015-04-17&rft.volume=10&rft.issue=4&rft.spage=1110&rft.epage=1117&rft.pages=1110-1117&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/cb500976y&rft_dat=%3Cproquest_pubme%3E1674203681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674203681&rft_id=info:pmid/25607237&rfr_iscdi=true