Morphometric analysis of progressive changes in hereditary cerebellar cortical degenerative disease (abiotrophy) in rabbits caused by abnormal synaptogenesis

We previously investigated rabbit hereditary cerebellar cortical degenerative disease, called cerebellar cortical abiotrophy in the veterinary field, and determined that the pathogenesis of this disease is the result of failed synaptogenesis between parallel fibers and Purkinje cells. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Toxicologic Pathology 2015, Vol.28(2), pp.73-78
Hauptverfasser: Sato, Junko, Yamada, Naoaki, Kobayashi, Ryosuke, Tsuchitani, Minoru, Kobayashi, Yoshiyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously investigated rabbit hereditary cerebellar cortical degenerative disease, called cerebellar cortical abiotrophy in the veterinary field, and determined that the pathogenesis of this disease is the result of failed synaptogenesis between parallel fibers and Purkinje cells. In this study, longitudinal changes in the development and atrophy of the cerebellum of rabbits with hereditary abiotrophy after birth were morphometrically examined (postnatal day [PD] 15 and 42) using image analysis. Although development of the cerebellum in rabbits with abiotrophy was observed from PD 15 to PD 42, the growth rate of the cerebellum was less than that in normal rabbits. In rabbits with abiotrophy, the number of granular cells undergoing apoptosis was significantly higher at PD 15 and dramatically decreased at PD 42. The number of granular cells did not increase from PD 15 to 42. The synaptogenesis peak at PD 15 occurred when the largest number of apoptotic granular cells in rabbits with abiotrophy was observed. Although 26% to 36% of parallel fiber terminals formed synaptic junctions with Purkinje cell spines, the remainder did not at PD 15 and 42. The rate of failure of synaptogenesis in the present study might be specific to this case of abiotrophy. Morphometric analysis revealed detailed changes in development and atrophy in animals with postnatal cerebellar disease occurring soon after birth.
ISSN:0914-9198
1881-915X
1347-7404
DOI:10.1293/tox.2014-0057