Dynamic urea bond for the design of reversible and self-healing polymers

Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-02, Vol.5 (1), p.3218-3218, Article 3218
Hauptverfasser: Ying, Hanze, Zhang, Yanfeng, Cheng, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3218
container_issue 1
container_start_page 3218
container_title Nature communications
container_volume 5
creator Ying, Hanze
Zhang, Yanfeng
Cheng, Jianjun
description Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-urea)s capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials. The design of dynamic covalent bonds is crucial to self-healing polymer materials, but the reaction normally occurs in the presence of heat or/and catalysts. Ying et al. report a catalyst-free design of dynamic urea bonds that are capable of autonomous repairing at low temperature.
doi_str_mv 10.1038/ncomms4218
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4438999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499134897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-6ffad05d50014e600d23f79a255feb16ab5acf7f4650994c6c8d92666b6298c33</originalsourceid><addsrcrecordid>eNplkd1LHDEUxYNUVNSX_gEl0JeijCaZO9nkpVD8BsEX-xwymZvdkZlkm-wI-983sn5sbV5u4Pw491wOIV85O-OsVufBxXHMILjaIQeCAa_4TNRftv775DjnJ1ZerbkC2CP7AkALKdgBub1cBzv2jk4JLW1j6KiPia4WSDvM_TzQ6GnCZ0y5bwektgAZB18t0A59mNNlHNZjUY_IrrdDxuPXeUh-X189XtxW9w83dxe_7ivXMLWqpPe2Y03XMMYBJWOdqP1MW9E0HlsubdtY52ceZMO0Bied6kpUKVsptHJ1fUh-bnyXUzti5zCskh3MMvWjTWsTbW_-VUK_MPP4bABqpbUuBj9eDVL8M2FembHPDofBBoxTNhy05jUoPSvo90_oU5xSKOe9UMAAGgWFOtlQLsWcE_r3MJyZl47MR0cF_rYd_x19a6QApxsgFynMMW3t_N_uL5ngnC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494044584</pqid></control><display><type>article</type><title>Dynamic urea bond for the design of reversible and self-healing polymers</title><source>Springer Nature OA Free Journals</source><creator>Ying, Hanze ; Zhang, Yanfeng ; Cheng, Jianjun</creator><creatorcontrib>Ying, Hanze ; Zhang, Yanfeng ; Cheng, Jianjun</creatorcontrib><description>Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-urea)s capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials. The design of dynamic covalent bonds is crucial to self-healing polymer materials, but the reaction normally occurs in the presence of heat or/and catalysts. Ying et al. report a catalyst-free design of dynamic urea bonds that are capable of autonomous repairing at low temperature.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4218</identifier><identifier>PMID: 24492620</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/1028 ; 639/301/930/1032 ; 639/638/403 ; Humanities and Social Sciences ; multidisciplinary ; Polymers - chemical synthesis ; Science ; Science (multidisciplinary) ; Urea - chemistry</subject><ispartof>Nature communications, 2014-02, Vol.5 (1), p.3218-3218, Article 3218</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Feb 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-6ffad05d50014e600d23f79a255feb16ab5acf7f4650994c6c8d92666b6298c33</citedby><cites>FETCH-LOGICAL-c508t-6ffad05d50014e600d23f79a255feb16ab5acf7f4650994c6c8d92666b6298c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438999/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438999/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4218$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24492620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ying, Hanze</creatorcontrib><creatorcontrib>Zhang, Yanfeng</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><title>Dynamic urea bond for the design of reversible and self-healing polymers</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-urea)s capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials. The design of dynamic covalent bonds is crucial to self-healing polymer materials, but the reaction normally occurs in the presence of heat or/and catalysts. Ying et al. report a catalyst-free design of dynamic urea bonds that are capable of autonomous repairing at low temperature.</description><subject>639/301/923/1028</subject><subject>639/301/930/1032</subject><subject>639/638/403</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Polymers - chemical synthesis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Urea - chemistry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkd1LHDEUxYNUVNSX_gEl0JeijCaZO9nkpVD8BsEX-xwymZvdkZlkm-wI-983sn5sbV5u4Pw491wOIV85O-OsVufBxXHMILjaIQeCAa_4TNRftv775DjnJ1ZerbkC2CP7AkALKdgBub1cBzv2jk4JLW1j6KiPia4WSDvM_TzQ6GnCZ0y5bwektgAZB18t0A59mNNlHNZjUY_IrrdDxuPXeUh-X189XtxW9w83dxe_7ivXMLWqpPe2Y03XMMYBJWOdqP1MW9E0HlsubdtY52ceZMO0Bied6kpUKVsptHJ1fUh-bnyXUzti5zCskh3MMvWjTWsTbW_-VUK_MPP4bABqpbUuBj9eDVL8M2FembHPDofBBoxTNhy05jUoPSvo90_oU5xSKOe9UMAAGgWFOtlQLsWcE_r3MJyZl47MR0cF_rYd_x19a6QApxsgFynMMW3t_N_uL5ngnC4</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Ying, Hanze</creator><creator>Zhang, Yanfeng</creator><creator>Cheng, Jianjun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140204</creationdate><title>Dynamic urea bond for the design of reversible and self-healing polymers</title><author>Ying, Hanze ; Zhang, Yanfeng ; Cheng, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-6ffad05d50014e600d23f79a255feb16ab5acf7f4650994c6c8d92666b6298c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/923/1028</topic><topic>639/301/930/1032</topic><topic>639/638/403</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Polymers - chemical synthesis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Urea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Hanze</creatorcontrib><creatorcontrib>Zhang, Yanfeng</creatorcontrib><creatorcontrib>Cheng, Jianjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying, Hanze</au><au>Zhang, Yanfeng</au><au>Cheng, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic urea bond for the design of reversible and self-healing polymers</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3218</spage><epage>3218</epage><pages>3218-3218</pages><artnum>3218</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-urea)s capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials. The design of dynamic covalent bonds is crucial to self-healing polymer materials, but the reaction normally occurs in the presence of heat or/and catalysts. Ying et al. report a catalyst-free design of dynamic urea bonds that are capable of autonomous repairing at low temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24492620</pmid><doi>10.1038/ncomms4218</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-02, Vol.5 (1), p.3218-3218, Article 3218
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4438999
source Springer Nature OA Free Journals
subjects 639/301/923/1028
639/301/930/1032
639/638/403
Humanities and Social Sciences
multidisciplinary
Polymers - chemical synthesis
Science
Science (multidisciplinary)
Urea - chemistry
title Dynamic urea bond for the design of reversible and self-healing polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20urea%20bond%20for%20the%20design%20of%20reversible%20and%20self-healing%20polymers&rft.jtitle=Nature%20communications&rft.au=Ying,%20Hanze&rft.date=2014-02-04&rft.volume=5&rft.issue=1&rft.spage=3218&rft.epage=3218&rft.pages=3218-3218&rft.artnum=3218&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4218&rft_dat=%3Cproquest_C6C%3E1499134897%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494044584&rft_id=info:pmid/24492620&rfr_iscdi=true