Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels

A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2015-04, Vol.26 (4), p.660-668
Hauptverfasser: Broome, Ann-Marie, Ramamurthy, Gopal, Lavik, Kari, Liggett, Alexander, Kinstlinger, Ian, Basilion, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 4
container_start_page 660
container_title Bioconjugate chemistry
container_volume 26
creator Broome, Ann-Marie
Ramamurthy, Gopal
Lavik, Kari
Liggett, Alexander
Kinstlinger, Ian
Basilion, James
description A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.
doi_str_mv 10.1021/bc500597y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1673792084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi0EoqVw4AWQL0hwCIwdO7YvSKW0S6WVKqHlbE2cyZIqiRc7qdQbr8Cr8CA8BE9Cqi0rkLjMjDSf_hn9P2PPBbwRIMXbOmgA7cztA3YstIRCWSEfLjOoshAW5BF7kvM1ADhh5WN2JLUxWipxzDZXu6kL2PPLAbfduOWx5RtMW5qo4T9__Pr2fYU9hinmrsFMvBv5-4RL3cxDTJlPkX9Y2DDx89XFJ76mG-rzU_aoxT7Ts_t-wj5fnG_OPhbrq9Xl2em6QAV6Khw0IjQBW6oVCWmMs43VrpKk20ZhHWzVmEpK7QhcRaUBMHXACkwbrHKqPGHv9rq7uR6oCTROCXu_S92A6dZH7Py_m7H74rfxxitVmkrYReDVvUCKX2fKkx-6HKjvcaQ4Zy8qUxonwd7der1HQ4o5J2oPZwT4uxT8IYWFffH3Xwfyj-0L8HIPYMj-Os5pXGz6j9BvSfeQDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673792084</pqid></control><display><type>article</type><title>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Broome, Ann-Marie ; Ramamurthy, Gopal ; Lavik, Kari ; Liggett, Alexander ; Kinstlinger, Ian ; Basilion, James</creator><creatorcontrib>Broome, Ann-Marie ; Ramamurthy, Gopal ; Lavik, Kari ; Liggett, Alexander ; Kinstlinger, Ian ; Basilion, James</creatorcontrib><description>A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/bc500597y</identifier><identifier>PMID: 25775241</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; Biotin - chemistry ; Biotin - metabolism ; Biotinylation ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain Neoplasms - ultrastructure ; Cell Line, Tumor ; Epidermal Growth Factor - chemistry ; Epidermal Growth Factor - genetics ; Epidermal Growth Factor - metabolism ; Female ; Gene Expression ; Genes, Reporter ; Histidine - chemistry ; Histidine - genetics ; Histidine - metabolism ; Humans ; Mice ; Mice, Nude ; Molecular Imaging - methods ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasm Transplantation ; Oligopeptides - chemistry ; Oligopeptides - genetics ; Oligopeptides - metabolism ; Optical Imaging - methods ; Receptor, Epidermal Growth Factor - genetics ; Receptor, Epidermal Growth Factor - metabolism ; Stereotaxic Techniques ; Streptavidin - chemistry ; Streptavidin - metabolism</subject><ispartof>Bioconjugate chemistry, 2015-04, Vol.26 (4), p.660-668</ispartof><rights>Copyright © American Chemical Society</rights><rights>2015 American Chemical Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</citedby><cites>FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bc500597y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bc500597y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Broome, Ann-Marie</creatorcontrib><creatorcontrib>Ramamurthy, Gopal</creatorcontrib><creatorcontrib>Lavik, Kari</creatorcontrib><creatorcontrib>Liggett, Alexander</creatorcontrib><creatorcontrib>Kinstlinger, Ian</creatorcontrib><creatorcontrib>Basilion, James</creatorcontrib><title>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.</description><subject>Animals</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Biotin - chemistry</subject><subject>Biotin - metabolism</subject><subject>Biotinylation</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - ultrastructure</subject><subject>Cell Line, Tumor</subject><subject>Epidermal Growth Factor - chemistry</subject><subject>Epidermal Growth Factor - genetics</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Histidine - chemistry</subject><subject>Histidine - genetics</subject><subject>Histidine - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Imaging - methods</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - genetics</subject><subject>Oligopeptides - metabolism</subject><subject>Optical Imaging - methods</subject><subject>Receptor, Epidermal Growth Factor - genetics</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Stereotaxic Techniques</subject><subject>Streptavidin - chemistry</subject><subject>Streptavidin - metabolism</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcFu1DAQhi0EoqVw4AWQL0hwCIwdO7YvSKW0S6WVKqHlbE2cyZIqiRc7qdQbr8Cr8CA8BE9Cqi0rkLjMjDSf_hn9P2PPBbwRIMXbOmgA7cztA3YstIRCWSEfLjOoshAW5BF7kvM1ADhh5WN2JLUxWipxzDZXu6kL2PPLAbfduOWx5RtMW5qo4T9__Pr2fYU9hinmrsFMvBv5-4RL3cxDTJlPkX9Y2DDx89XFJ76mG-rzU_aoxT7Ts_t-wj5fnG_OPhbrq9Xl2em6QAV6Khw0IjQBW6oVCWmMs43VrpKk20ZhHWzVmEpK7QhcRaUBMHXACkwbrHKqPGHv9rq7uR6oCTROCXu_S92A6dZH7Py_m7H74rfxxitVmkrYReDVvUCKX2fKkx-6HKjvcaQ4Zy8qUxonwd7der1HQ4o5J2oPZwT4uxT8IYWFffH3Xwfyj-0L8HIPYMj-Os5pXGz6j9BvSfeQDg</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Broome, Ann-Marie</creator><creator>Ramamurthy, Gopal</creator><creator>Lavik, Kari</creator><creator>Liggett, Alexander</creator><creator>Kinstlinger, Ian</creator><creator>Basilion, James</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150415</creationdate><title>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</title><author>Broome, Ann-Marie ; Ramamurthy, Gopal ; Lavik, Kari ; Liggett, Alexander ; Kinstlinger, Ian ; Basilion, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Biotin - chemistry</topic><topic>Biotin - metabolism</topic><topic>Biotinylation</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - ultrastructure</topic><topic>Cell Line, Tumor</topic><topic>Epidermal Growth Factor - chemistry</topic><topic>Epidermal Growth Factor - genetics</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Histidine - chemistry</topic><topic>Histidine - genetics</topic><topic>Histidine - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Imaging - methods</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - genetics</topic><topic>Oligopeptides - metabolism</topic><topic>Optical Imaging - methods</topic><topic>Receptor, Epidermal Growth Factor - genetics</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Stereotaxic Techniques</topic><topic>Streptavidin - chemistry</topic><topic>Streptavidin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broome, Ann-Marie</creatorcontrib><creatorcontrib>Ramamurthy, Gopal</creatorcontrib><creatorcontrib>Lavik, Kari</creatorcontrib><creatorcontrib>Liggett, Alexander</creatorcontrib><creatorcontrib>Kinstlinger, Ian</creatorcontrib><creatorcontrib>Basilion, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broome, Ann-Marie</au><au>Ramamurthy, Gopal</au><au>Lavik, Kari</au><au>Liggett, Alexander</au><au>Kinstlinger, Ian</au><au>Basilion, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2015-04-15</date><risdate>2015</risdate><volume>26</volume><issue>4</issue><spage>660</spage><epage>668</epage><pages>660-668</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25775241</pmid><doi>10.1021/bc500597y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2015-04, Vol.26 (4), p.660-668
issn 1043-1802
1520-4812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437618
source MEDLINE; American Chemical Society Journals
subjects Animals
beta-Galactosidase - genetics
beta-Galactosidase - metabolism
Biotin - chemistry
Biotin - metabolism
Biotinylation
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - ultrastructure
Cell Line, Tumor
Epidermal Growth Factor - chemistry
Epidermal Growth Factor - genetics
Epidermal Growth Factor - metabolism
Female
Gene Expression
Genes, Reporter
Histidine - chemistry
Histidine - genetics
Histidine - metabolism
Humans
Mice
Mice, Nude
Molecular Imaging - methods
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Neoplasm Transplantation
Oligopeptides - chemistry
Oligopeptides - genetics
Oligopeptides - metabolism
Optical Imaging - methods
Receptor, Epidermal Growth Factor - genetics
Receptor, Epidermal Growth Factor - metabolism
Stereotaxic Techniques
Streptavidin - chemistry
Streptavidin - metabolism
title Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Imaging%20of%20Targeted%20%CE%B2%E2%80%91Galactosidase%20in%20Brain%20Tumors%20to%20Detect%20EGFR%20Levels&rft.jtitle=Bioconjugate%20chemistry&rft.au=Broome,%20Ann-Marie&rft.date=2015-04-15&rft.volume=26&rft.issue=4&rft.spage=660&rft.epage=668&rft.pages=660-668&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/bc500597y&rft_dat=%3Cproquest_pubme%3E1673792084%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673792084&rft_id=info:pmid/25775241&rfr_iscdi=true