Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels
A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a pla...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2015-04, Vol.26 (4), p.660-668 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 4 |
container_start_page | 660 |
container_title | Bioconjugate chemistry |
container_volume | 26 |
creator | Broome, Ann-Marie Ramamurthy, Gopal Lavik, Kari Liggett, Alexander Kinstlinger, Ian Basilion, James |
description | A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging. |
doi_str_mv | 10.1021/bc500597y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1673792084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi0EoqVw4AWQL0hwCIwdO7YvSKW0S6WVKqHlbE2cyZIqiRc7qdQbr8Cr8CA8BE9Cqi0rkLjMjDSf_hn9P2PPBbwRIMXbOmgA7cztA3YstIRCWSEfLjOoshAW5BF7kvM1ADhh5WN2JLUxWipxzDZXu6kL2PPLAbfduOWx5RtMW5qo4T9__Pr2fYU9hinmrsFMvBv5-4RL3cxDTJlPkX9Y2DDx89XFJ76mG-rzU_aoxT7Ts_t-wj5fnG_OPhbrq9Xl2em6QAV6Khw0IjQBW6oVCWmMs43VrpKk20ZhHWzVmEpK7QhcRaUBMHXACkwbrHKqPGHv9rq7uR6oCTROCXu_S92A6dZH7Py_m7H74rfxxitVmkrYReDVvUCKX2fKkx-6HKjvcaQ4Zy8qUxonwd7der1HQ4o5J2oPZwT4uxT8IYWFffH3Xwfyj-0L8HIPYMj-Os5pXGz6j9BvSfeQDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673792084</pqid></control><display><type>article</type><title>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Broome, Ann-Marie ; Ramamurthy, Gopal ; Lavik, Kari ; Liggett, Alexander ; Kinstlinger, Ian ; Basilion, James</creator><creatorcontrib>Broome, Ann-Marie ; Ramamurthy, Gopal ; Lavik, Kari ; Liggett, Alexander ; Kinstlinger, Ian ; Basilion, James</creatorcontrib><description>A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/bc500597y</identifier><identifier>PMID: 25775241</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; Biotin - chemistry ; Biotin - metabolism ; Biotinylation ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain Neoplasms - ultrastructure ; Cell Line, Tumor ; Epidermal Growth Factor - chemistry ; Epidermal Growth Factor - genetics ; Epidermal Growth Factor - metabolism ; Female ; Gene Expression ; Genes, Reporter ; Histidine - chemistry ; Histidine - genetics ; Histidine - metabolism ; Humans ; Mice ; Mice, Nude ; Molecular Imaging - methods ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasm Transplantation ; Oligopeptides - chemistry ; Oligopeptides - genetics ; Oligopeptides - metabolism ; Optical Imaging - methods ; Receptor, Epidermal Growth Factor - genetics ; Receptor, Epidermal Growth Factor - metabolism ; Stereotaxic Techniques ; Streptavidin - chemistry ; Streptavidin - metabolism</subject><ispartof>Bioconjugate chemistry, 2015-04, Vol.26 (4), p.660-668</ispartof><rights>Copyright © American Chemical Society</rights><rights>2015 American Chemical Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</citedby><cites>FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bc500597y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bc500597y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Broome, Ann-Marie</creatorcontrib><creatorcontrib>Ramamurthy, Gopal</creatorcontrib><creatorcontrib>Lavik, Kari</creatorcontrib><creatorcontrib>Liggett, Alexander</creatorcontrib><creatorcontrib>Kinstlinger, Ian</creatorcontrib><creatorcontrib>Basilion, James</creatorcontrib><title>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.</description><subject>Animals</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Biotin - chemistry</subject><subject>Biotin - metabolism</subject><subject>Biotinylation</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - ultrastructure</subject><subject>Cell Line, Tumor</subject><subject>Epidermal Growth Factor - chemistry</subject><subject>Epidermal Growth Factor - genetics</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Histidine - chemistry</subject><subject>Histidine - genetics</subject><subject>Histidine - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Imaging - methods</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - genetics</subject><subject>Oligopeptides - metabolism</subject><subject>Optical Imaging - methods</subject><subject>Receptor, Epidermal Growth Factor - genetics</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Stereotaxic Techniques</subject><subject>Streptavidin - chemistry</subject><subject>Streptavidin - metabolism</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcFu1DAQhi0EoqVw4AWQL0hwCIwdO7YvSKW0S6WVKqHlbE2cyZIqiRc7qdQbr8Cr8CA8BE9Cqi0rkLjMjDSf_hn9P2PPBbwRIMXbOmgA7cztA3YstIRCWSEfLjOoshAW5BF7kvM1ADhh5WN2JLUxWipxzDZXu6kL2PPLAbfduOWx5RtMW5qo4T9__Pr2fYU9hinmrsFMvBv5-4RL3cxDTJlPkX9Y2DDx89XFJ76mG-rzU_aoxT7Ts_t-wj5fnG_OPhbrq9Xl2em6QAV6Khw0IjQBW6oVCWmMs43VrpKk20ZhHWzVmEpK7QhcRaUBMHXACkwbrHKqPGHv9rq7uR6oCTROCXu_S92A6dZH7Py_m7H74rfxxitVmkrYReDVvUCKX2fKkx-6HKjvcaQ4Zy8qUxonwd7der1HQ4o5J2oPZwT4uxT8IYWFffH3Xwfyj-0L8HIPYMj-Os5pXGz6j9BvSfeQDg</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Broome, Ann-Marie</creator><creator>Ramamurthy, Gopal</creator><creator>Lavik, Kari</creator><creator>Liggett, Alexander</creator><creator>Kinstlinger, Ian</creator><creator>Basilion, James</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150415</creationdate><title>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</title><author>Broome, Ann-Marie ; Ramamurthy, Gopal ; Lavik, Kari ; Liggett, Alexander ; Kinstlinger, Ian ; Basilion, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-90d1cdcafeb4e127798d85962e5fd4abc86d762259e096e37007bca607fc84943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Biotin - chemistry</topic><topic>Biotin - metabolism</topic><topic>Biotinylation</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - ultrastructure</topic><topic>Cell Line, Tumor</topic><topic>Epidermal Growth Factor - chemistry</topic><topic>Epidermal Growth Factor - genetics</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Histidine - chemistry</topic><topic>Histidine - genetics</topic><topic>Histidine - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Imaging - methods</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - genetics</topic><topic>Oligopeptides - metabolism</topic><topic>Optical Imaging - methods</topic><topic>Receptor, Epidermal Growth Factor - genetics</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Stereotaxic Techniques</topic><topic>Streptavidin - chemistry</topic><topic>Streptavidin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broome, Ann-Marie</creatorcontrib><creatorcontrib>Ramamurthy, Gopal</creatorcontrib><creatorcontrib>Lavik, Kari</creatorcontrib><creatorcontrib>Liggett, Alexander</creatorcontrib><creatorcontrib>Kinstlinger, Ian</creatorcontrib><creatorcontrib>Basilion, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broome, Ann-Marie</au><au>Ramamurthy, Gopal</au><au>Lavik, Kari</au><au>Liggett, Alexander</au><au>Kinstlinger, Ian</au><au>Basilion, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2015-04-15</date><risdate>2015</risdate><volume>26</volume><issue>4</issue><spage>660</spage><epage>668</epage><pages>660-668</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25775241</pmid><doi>10.1021/bc500597y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2015-04, Vol.26 (4), p.660-668 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437618 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals beta-Galactosidase - genetics beta-Galactosidase - metabolism Biotin - chemistry Biotin - metabolism Biotinylation Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain Neoplasms - ultrastructure Cell Line, Tumor Epidermal Growth Factor - chemistry Epidermal Growth Factor - genetics Epidermal Growth Factor - metabolism Female Gene Expression Genes, Reporter Histidine - chemistry Histidine - genetics Histidine - metabolism Humans Mice Mice, Nude Molecular Imaging - methods Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Neoplasm Transplantation Oligopeptides - chemistry Oligopeptides - genetics Oligopeptides - metabolism Optical Imaging - methods Receptor, Epidermal Growth Factor - genetics Receptor, Epidermal Growth Factor - metabolism Stereotaxic Techniques Streptavidin - chemistry Streptavidin - metabolism |
title | Optical Imaging of Targeted β‑Galactosidase in Brain Tumors to Detect EGFR Levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Imaging%20of%20Targeted%20%CE%B2%E2%80%91Galactosidase%20in%20Brain%20Tumors%20to%20Detect%20EGFR%20Levels&rft.jtitle=Bioconjugate%20chemistry&rft.au=Broome,%20Ann-Marie&rft.date=2015-04-15&rft.volume=26&rft.issue=4&rft.spage=660&rft.epage=668&rft.pages=660-668&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/bc500597y&rft_dat=%3Cproquest_pubme%3E1673792084%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673792084&rft_id=info:pmid/25775241&rfr_iscdi=true |