A mathematical model of the rat nephron: glucose transport

Mathematical models of the proximal tubule (PT), loop of Henle (LOH), and distal nephron have been combined to simulate transport by rat renal tubules. The ensemble is composed of 24,000 superficial (SF) nephrons and 12,000 juxtamedullary (JM) nephrons in 5 classes (according to LOH length); all coa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2015-05, Vol.308 (10), p.F1098-F1118
1. Verfasser: Weinstein, Alan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F1118
container_issue 10
container_start_page F1098
container_title American journal of physiology. Renal physiology
container_volume 308
creator Weinstein, Alan M
description Mathematical models of the proximal tubule (PT), loop of Henle (LOH), and distal nephron have been combined to simulate transport by rat renal tubules. The ensemble is composed of 24,000 superficial (SF) nephrons and 12,000 juxtamedullary (JM) nephrons in 5 classes (according to LOH length); all coalesce into 7,200 connecting tubules (CNT). Medullary interstitial solute concentrations are specified. The model equations require that each nephron glomerular filtration rate (GFR) satisfies a tubuloglomerular feedback (TGF) relationship, and each initial hydrostatic pressure yields a common CNT pressure; that common CNT pressure is determined from an overall distal hydraulic resistance to flow. By virtue of the greater GFR for JM nephrons, fluid delivery to SF and JM tubules is comparable. Glucose reabsorption is restricted to the PT, cotransported with one Na in the convoluted tubule (SGLT2), and two Na in the straight tubule (SGLT1). Increasing ambient glucose from 5 to 10 mM increases proximal Na reabsorption and decreases distal delivery. This is mitigated by a TGF-mediated increase in GFR, and may thus be an etiology for TGF-mediated glomerular hyperfiltration. With SGLT2 inhibition by 95%, the model predicts that under normoglycemic conditions about 60% of filtered glucose will still be reabsorbed, so that profound glycosuria is not to be expected. Compared with glucose-driven osmotic diuresis, SGLT2 inhibition provokes greater natriuresis. When hyperglycemia is superimposed on SGLT2 inhibition, the model suggests that natriuresis may be severe, reflecting synergy of a proximal diuretic and osmotic diuresis. In sum, the model captures TGF-mediated diabetic hyperfiltration and predicts glomerular protection with SGLT2 inhibition.
doi_str_mv 10.1152/ajprenal.00505.2014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3699807481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-7f1e7e9ab6798b02655fdaff7c3b3734c605dc1cd04879a6db8b1fdd2730c5973</originalsourceid><addsrcrecordid>eNpdkctKxDAUhoMo3p9AkIIbNx3PyaVpXQiDeIMBNwruQpqmToe2qUkr-PZmvKFukpDznZ-TfIQcIcwQBT3Tq8HbXrczAAFiRgH5BtmNFZoiz7LNeC4YprmQTztkL4QVACBS3CY7VGQF5znskvN50ulxaePSGN0mnatsm7g6iXeJ12PS22HpXX-ePLeTccEmo9d9GJwfD8hWrdtgD7_2ffJ4ffVweZsu7m_uLueL1HDGxlTWaKUtdJnJIi-BZkLUla5raVjJJOMmA1EZNBXwXBY6q8q8xLqqqGRgRCHZPrn4zB2msrOVsX0coVWDbzrt35TTjfpb6ZulenavinMmAXgMOP0K8O5lsmFUXROMbVvdWzcFhVmOBVKKNKIn_9CVm3z85A8q5uVSQKTYJ2W8C8Hb-mcYBLV2o77dqA83au0mdh3_fsdPz7cM9g6evIzO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684378750</pqid></control><display><type>article</type><title>A mathematical model of the rat nephron: glucose transport</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Weinstein, Alan M</creator><creatorcontrib>Weinstein, Alan M</creatorcontrib><description>Mathematical models of the proximal tubule (PT), loop of Henle (LOH), and distal nephron have been combined to simulate transport by rat renal tubules. The ensemble is composed of 24,000 superficial (SF) nephrons and 12,000 juxtamedullary (JM) nephrons in 5 classes (according to LOH length); all coalesce into 7,200 connecting tubules (CNT). Medullary interstitial solute concentrations are specified. The model equations require that each nephron glomerular filtration rate (GFR) satisfies a tubuloglomerular feedback (TGF) relationship, and each initial hydrostatic pressure yields a common CNT pressure; that common CNT pressure is determined from an overall distal hydraulic resistance to flow. By virtue of the greater GFR for JM nephrons, fluid delivery to SF and JM tubules is comparable. Glucose reabsorption is restricted to the PT, cotransported with one Na in the convoluted tubule (SGLT2), and two Na in the straight tubule (SGLT1). Increasing ambient glucose from 5 to 10 mM increases proximal Na reabsorption and decreases distal delivery. This is mitigated by a TGF-mediated increase in GFR, and may thus be an etiology for TGF-mediated glomerular hyperfiltration. With SGLT2 inhibition by 95%, the model predicts that under normoglycemic conditions about 60% of filtered glucose will still be reabsorbed, so that profound glycosuria is not to be expected. Compared with glucose-driven osmotic diuresis, SGLT2 inhibition provokes greater natriuresis. When hyperglycemia is superimposed on SGLT2 inhibition, the model suggests that natriuresis may be severe, reflecting synergy of a proximal diuretic and osmotic diuresis. In sum, the model captures TGF-mediated diabetic hyperfiltration and predicts glomerular protection with SGLT2 inhibition.</description><identifier>ISSN: 1931-857X</identifier><identifier>EISSN: 1522-1466</identifier><identifier>DOI: 10.1152/ajprenal.00505.2014</identifier><identifier>PMID: 25694480</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Biological Transport - physiology ; Glomerular Filtration Rate - physiology ; Glucose ; Glucose - metabolism ; Hyperglycemia ; Kidneys ; Mathematical models ; Models, Animal ; Models, Theoretical ; Nephrons - physiology ; Pressure ; Rats ; Rodents ; Simulation ; Sodium - metabolism ; Sodium-Glucose Transporter 2 - antagonists &amp; inhibitors</subject><ispartof>American journal of physiology. Renal physiology, 2015-05, Vol.308 (10), p.F1098-F1118</ispartof><rights>Copyright © 2015 the American Physiological Society.</rights><rights>Copyright American Physiological Society May 15, 2015</rights><rights>Copyright © 2015 the American Physiological Society 2015 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-7f1e7e9ab6798b02655fdaff7c3b3734c605dc1cd04879a6db8b1fdd2730c5973</citedby><cites>FETCH-LOGICAL-c433t-7f1e7e9ab6798b02655fdaff7c3b3734c605dc1cd04879a6db8b1fdd2730c5973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3037,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25694480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinstein, Alan M</creatorcontrib><title>A mathematical model of the rat nephron: glucose transport</title><title>American journal of physiology. Renal physiology</title><addtitle>Am J Physiol Renal Physiol</addtitle><description>Mathematical models of the proximal tubule (PT), loop of Henle (LOH), and distal nephron have been combined to simulate transport by rat renal tubules. The ensemble is composed of 24,000 superficial (SF) nephrons and 12,000 juxtamedullary (JM) nephrons in 5 classes (according to LOH length); all coalesce into 7,200 connecting tubules (CNT). Medullary interstitial solute concentrations are specified. The model equations require that each nephron glomerular filtration rate (GFR) satisfies a tubuloglomerular feedback (TGF) relationship, and each initial hydrostatic pressure yields a common CNT pressure; that common CNT pressure is determined from an overall distal hydraulic resistance to flow. By virtue of the greater GFR for JM nephrons, fluid delivery to SF and JM tubules is comparable. Glucose reabsorption is restricted to the PT, cotransported with one Na in the convoluted tubule (SGLT2), and two Na in the straight tubule (SGLT1). Increasing ambient glucose from 5 to 10 mM increases proximal Na reabsorption and decreases distal delivery. This is mitigated by a TGF-mediated increase in GFR, and may thus be an etiology for TGF-mediated glomerular hyperfiltration. With SGLT2 inhibition by 95%, the model predicts that under normoglycemic conditions about 60% of filtered glucose will still be reabsorbed, so that profound glycosuria is not to be expected. Compared with glucose-driven osmotic diuresis, SGLT2 inhibition provokes greater natriuresis. When hyperglycemia is superimposed on SGLT2 inhibition, the model suggests that natriuresis may be severe, reflecting synergy of a proximal diuretic and osmotic diuresis. In sum, the model captures TGF-mediated diabetic hyperfiltration and predicts glomerular protection with SGLT2 inhibition.</description><subject>Animals</subject><subject>Biological Transport - physiology</subject><subject>Glomerular Filtration Rate - physiology</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Hyperglycemia</subject><subject>Kidneys</subject><subject>Mathematical models</subject><subject>Models, Animal</subject><subject>Models, Theoretical</subject><subject>Nephrons - physiology</subject><subject>Pressure</subject><subject>Rats</subject><subject>Rodents</subject><subject>Simulation</subject><subject>Sodium - metabolism</subject><subject>Sodium-Glucose Transporter 2 - antagonists &amp; inhibitors</subject><issn>1931-857X</issn><issn>1522-1466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctKxDAUhoMo3p9AkIIbNx3PyaVpXQiDeIMBNwruQpqmToe2qUkr-PZmvKFukpDznZ-TfIQcIcwQBT3Tq8HbXrczAAFiRgH5BtmNFZoiz7LNeC4YprmQTztkL4QVACBS3CY7VGQF5znskvN50ulxaePSGN0mnatsm7g6iXeJ12PS22HpXX-ePLeTccEmo9d9GJwfD8hWrdtgD7_2ffJ4ffVweZsu7m_uLueL1HDGxlTWaKUtdJnJIi-BZkLUla5raVjJJOMmA1EZNBXwXBY6q8q8xLqqqGRgRCHZPrn4zB2msrOVsX0coVWDbzrt35TTjfpb6ZulenavinMmAXgMOP0K8O5lsmFUXROMbVvdWzcFhVmOBVKKNKIn_9CVm3z85A8q5uVSQKTYJ2W8C8Hb-mcYBLV2o77dqA83au0mdh3_fsdPz7cM9g6evIzO</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Weinstein, Alan M</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150515</creationdate><title>A mathematical model of the rat nephron: glucose transport</title><author>Weinstein, Alan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-7f1e7e9ab6798b02655fdaff7c3b3734c605dc1cd04879a6db8b1fdd2730c5973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biological Transport - physiology</topic><topic>Glomerular Filtration Rate - physiology</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Hyperglycemia</topic><topic>Kidneys</topic><topic>Mathematical models</topic><topic>Models, Animal</topic><topic>Models, Theoretical</topic><topic>Nephrons - physiology</topic><topic>Pressure</topic><topic>Rats</topic><topic>Rodents</topic><topic>Simulation</topic><topic>Sodium - metabolism</topic><topic>Sodium-Glucose Transporter 2 - antagonists &amp; inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinstein, Alan M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology. Renal physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinstein, Alan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model of the rat nephron: glucose transport</atitle><jtitle>American journal of physiology. Renal physiology</jtitle><addtitle>Am J Physiol Renal Physiol</addtitle><date>2015-05-15</date><risdate>2015</risdate><volume>308</volume><issue>10</issue><spage>F1098</spage><epage>F1118</epage><pages>F1098-F1118</pages><issn>1931-857X</issn><eissn>1522-1466</eissn><abstract>Mathematical models of the proximal tubule (PT), loop of Henle (LOH), and distal nephron have been combined to simulate transport by rat renal tubules. The ensemble is composed of 24,000 superficial (SF) nephrons and 12,000 juxtamedullary (JM) nephrons in 5 classes (according to LOH length); all coalesce into 7,200 connecting tubules (CNT). Medullary interstitial solute concentrations are specified. The model equations require that each nephron glomerular filtration rate (GFR) satisfies a tubuloglomerular feedback (TGF) relationship, and each initial hydrostatic pressure yields a common CNT pressure; that common CNT pressure is determined from an overall distal hydraulic resistance to flow. By virtue of the greater GFR for JM nephrons, fluid delivery to SF and JM tubules is comparable. Glucose reabsorption is restricted to the PT, cotransported with one Na in the convoluted tubule (SGLT2), and two Na in the straight tubule (SGLT1). Increasing ambient glucose from 5 to 10 mM increases proximal Na reabsorption and decreases distal delivery. This is mitigated by a TGF-mediated increase in GFR, and may thus be an etiology for TGF-mediated glomerular hyperfiltration. With SGLT2 inhibition by 95%, the model predicts that under normoglycemic conditions about 60% of filtered glucose will still be reabsorbed, so that profound glycosuria is not to be expected. Compared with glucose-driven osmotic diuresis, SGLT2 inhibition provokes greater natriuresis. When hyperglycemia is superimposed on SGLT2 inhibition, the model suggests that natriuresis may be severe, reflecting synergy of a proximal diuretic and osmotic diuresis. In sum, the model captures TGF-mediated diabetic hyperfiltration and predicts glomerular protection with SGLT2 inhibition.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>25694480</pmid><doi>10.1152/ajprenal.00505.2014</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-857X
ispartof American journal of physiology. Renal physiology, 2015-05, Vol.308 (10), p.F1098-F1118
issn 1931-857X
1522-1466
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437004
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Biological Transport - physiology
Glomerular Filtration Rate - physiology
Glucose
Glucose - metabolism
Hyperglycemia
Kidneys
Mathematical models
Models, Animal
Models, Theoretical
Nephrons - physiology
Pressure
Rats
Rodents
Simulation
Sodium - metabolism
Sodium-Glucose Transporter 2 - antagonists & inhibitors
title A mathematical model of the rat nephron: glucose transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20of%20the%20rat%20nephron:%20glucose%20transport&rft.jtitle=American%20journal%20of%20physiology.%20Renal%20physiology&rft.au=Weinstein,%20Alan%20M&rft.date=2015-05-15&rft.volume=308&rft.issue=10&rft.spage=F1098&rft.epage=F1118&rft.pages=F1098-F1118&rft.issn=1931-857X&rft.eissn=1522-1466&rft_id=info:doi/10.1152/ajprenal.00505.2014&rft_dat=%3Cproquest_pubme%3E3699807481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684378750&rft_id=info:pmid/25694480&rfr_iscdi=true