Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intoleran...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: endocrinology and metabolism 2015-05, Vol.308 (10), p.E879-E890 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E890 |
---|---|
container_issue | 10 |
container_start_page | E879 |
container_title | American journal of physiology: endocrinology and metabolism |
container_volume | 308 |
creator | Dubé, John J Sitnick, Mitch T Schoiswohl, Gabriele Wills, Rachel C Basantani, Mahesh K Cai, Lingzhi Pulinilkunnil, Thomas Kershaw, Erin E |
description | Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent. |
doi_str_mv | 10.1152/ajpendo.00530.2014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4436997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694984076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-11c1a85a5f5eb1429d1459514d45ccd33902ab08b02379c6aeb52206cb97e35d3</originalsourceid><addsrcrecordid>eNpdkU1rFTEUhoNY7LX6B1xIwI0L55rPmclGKMUvKHRT1yGTnKm5ziRjkile_PPm2tuiXQXyPuclJw9CryjZUirZe7NbILi4JURysmWEiidoUwPWUCnlU7QhVPGG9kKdouc57wghnRTsGTplsut5r-QG_T53fokZcEn-ZtpbSN4Bnvxi6p2DCYqPAY8pztgcSLsvkN_hYS04xILzjwNiJjzv7yM_L8anjI1dC2D4Bcn62rVAGmOaTbCAfcCzt_ACnYxmyvDyeJ6hb58-Xl98aS6vPn-9OL9srGh5aSi11PTSyFHCQAVTjgqpJBVOSGsd54owM5B-IIx3yrYGhvoHpLWD6oBLx8_Qh7veZR1mcBZCSWbSS_KzSXsdjdf_J8F_1zfxVgvBW6W6WvD2WJDizxVy0bPPFqbJBIhr1rRVQvWCdG1F3zxCd3FNoa5XqV7wrm1FXyl2R9kUc04wPjyGEn1wq49u9V-3-uC2Dr3-d42HkXuZ_A8fDqRV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684376648</pqid></control><display><type>article</type><title>Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Dubé, John J ; Sitnick, Mitch T ; Schoiswohl, Gabriele ; Wills, Rachel C ; Basantani, Mahesh K ; Cai, Lingzhi ; Pulinilkunnil, Thomas ; Kershaw, Erin E</creator><creatorcontrib>Dubé, John J ; Sitnick, Mitch T ; Schoiswohl, Gabriele ; Wills, Rachel C ; Basantani, Mahesh K ; Cai, Lingzhi ; Pulinilkunnil, Thomas ; Kershaw, Erin E</creatorcontrib><description>Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.</description><identifier>ISSN: 0193-1849</identifier><identifier>EISSN: 1522-1555</identifier><identifier>DOI: 10.1152/ajpendo.00530.2014</identifier><identifier>PMID: 25783895</identifier><identifier>CODEN: AJPMD9</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adipocytes - metabolism ; Animals ; Athletic Performance ; Enzymes ; Exercise ; Exercise Tolerance - genetics ; Female ; Gene Deletion ; Lipase - genetics ; Lipase - metabolism ; Lipolysis - genetics ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor ability ; Muscle Fibers, Skeletal - metabolism ; Physical Conditioning, Animal - physiology ; Physical Exertion - genetics ; Rodents ; Triglycerides</subject><ispartof>American journal of physiology: endocrinology and metabolism, 2015-05, Vol.308 (10), p.E879-E890</ispartof><rights>Copyright © 2015 the American Physiological Society.</rights><rights>Copyright American Physiological Society May 15, 2015</rights><rights>Copyright © 2015 the American Physiological Society 2015 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-11c1a85a5f5eb1429d1459514d45ccd33902ab08b02379c6aeb52206cb97e35d3</citedby><cites>FETCH-LOGICAL-c463t-11c1a85a5f5eb1429d1459514d45ccd33902ab08b02379c6aeb52206cb97e35d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25783895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubé, John J</creatorcontrib><creatorcontrib>Sitnick, Mitch T</creatorcontrib><creatorcontrib>Schoiswohl, Gabriele</creatorcontrib><creatorcontrib>Wills, Rachel C</creatorcontrib><creatorcontrib>Basantani, Mahesh K</creatorcontrib><creatorcontrib>Cai, Lingzhi</creatorcontrib><creatorcontrib>Pulinilkunnil, Thomas</creatorcontrib><creatorcontrib>Kershaw, Erin E</creatorcontrib><title>Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice</title><title>American journal of physiology: endocrinology and metabolism</title><addtitle>Am J Physiol Endocrinol Metab</addtitle><description>Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.</description><subject>Adipocytes - metabolism</subject><subject>Animals</subject><subject>Athletic Performance</subject><subject>Enzymes</subject><subject>Exercise</subject><subject>Exercise Tolerance - genetics</subject><subject>Female</subject><subject>Gene Deletion</subject><subject>Lipase - genetics</subject><subject>Lipase - metabolism</subject><subject>Lipolysis - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Motor ability</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Physical Exertion - genetics</subject><subject>Rodents</subject><subject>Triglycerides</subject><issn>0193-1849</issn><issn>1522-1555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1rFTEUhoNY7LX6B1xIwI0L55rPmclGKMUvKHRT1yGTnKm5ziRjkile_PPm2tuiXQXyPuclJw9CryjZUirZe7NbILi4JURysmWEiidoUwPWUCnlU7QhVPGG9kKdouc57wghnRTsGTplsut5r-QG_T53fokZcEn-ZtpbSN4Bnvxi6p2DCYqPAY8pztgcSLsvkN_hYS04xILzjwNiJjzv7yM_L8anjI1dC2D4Bcn62rVAGmOaTbCAfcCzt_ACnYxmyvDyeJ6hb58-Xl98aS6vPn-9OL9srGh5aSi11PTSyFHCQAVTjgqpJBVOSGsd54owM5B-IIx3yrYGhvoHpLWD6oBLx8_Qh7veZR1mcBZCSWbSS_KzSXsdjdf_J8F_1zfxVgvBW6W6WvD2WJDizxVy0bPPFqbJBIhr1rRVQvWCdG1F3zxCd3FNoa5XqV7wrm1FXyl2R9kUc04wPjyGEn1wq49u9V-3-uC2Dr3-d42HkXuZ_A8fDqRV</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Dubé, John J</creator><creator>Sitnick, Mitch T</creator><creator>Schoiswohl, Gabriele</creator><creator>Wills, Rachel C</creator><creator>Basantani, Mahesh K</creator><creator>Cai, Lingzhi</creator><creator>Pulinilkunnil, Thomas</creator><creator>Kershaw, Erin E</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20150515</creationdate><title>Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice</title><author>Dubé, John J ; Sitnick, Mitch T ; Schoiswohl, Gabriele ; Wills, Rachel C ; Basantani, Mahesh K ; Cai, Lingzhi ; Pulinilkunnil, Thomas ; Kershaw, Erin E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-11c1a85a5f5eb1429d1459514d45ccd33902ab08b02379c6aeb52206cb97e35d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adipocytes - metabolism</topic><topic>Animals</topic><topic>Athletic Performance</topic><topic>Enzymes</topic><topic>Exercise</topic><topic>Exercise Tolerance - genetics</topic><topic>Female</topic><topic>Gene Deletion</topic><topic>Lipase - genetics</topic><topic>Lipase - metabolism</topic><topic>Lipolysis - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Motor ability</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Physical Exertion - genetics</topic><topic>Rodents</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubé, John J</creatorcontrib><creatorcontrib>Sitnick, Mitch T</creatorcontrib><creatorcontrib>Schoiswohl, Gabriele</creatorcontrib><creatorcontrib>Wills, Rachel C</creatorcontrib><creatorcontrib>Basantani, Mahesh K</creatorcontrib><creatorcontrib>Cai, Lingzhi</creatorcontrib><creatorcontrib>Pulinilkunnil, Thomas</creatorcontrib><creatorcontrib>Kershaw, Erin E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology: endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubé, John J</au><au>Sitnick, Mitch T</au><au>Schoiswohl, Gabriele</au><au>Wills, Rachel C</au><au>Basantani, Mahesh K</au><au>Cai, Lingzhi</au><au>Pulinilkunnil, Thomas</au><au>Kershaw, Erin E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice</atitle><jtitle>American journal of physiology: endocrinology and metabolism</jtitle><addtitle>Am J Physiol Endocrinol Metab</addtitle><date>2015-05-15</date><risdate>2015</risdate><volume>308</volume><issue>10</issue><spage>E879</spage><epage>E890</epage><pages>E879-E890</pages><issn>0193-1849</issn><eissn>1522-1555</eissn><coden>AJPMD9</coden><abstract>Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>25783895</pmid><doi>10.1152/ajpendo.00530.2014</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0193-1849 |
ispartof | American journal of physiology: endocrinology and metabolism, 2015-05, Vol.308 (10), p.E879-E890 |
issn | 0193-1849 1522-1555 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4436997 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adipocytes - metabolism Animals Athletic Performance Enzymes Exercise Exercise Tolerance - genetics Female Gene Deletion Lipase - genetics Lipase - metabolism Lipolysis - genetics Male Mice Mice, Inbred C57BL Mice, Knockout Motor ability Muscle Fibers, Skeletal - metabolism Physical Conditioning, Animal - physiology Physical Exertion - genetics Rodents Triglycerides |
title | Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adipose%20triglyceride%20lipase%20deletion%20from%20adipocytes,%20but%20not%20skeletal%20myocytes,%20impairs%20acute%20exercise%20performance%20in%20mice&rft.jtitle=American%20journal%20of%20physiology:%20endocrinology%20and%20metabolism&rft.au=Dub%C3%A9,%20John%20J&rft.date=2015-05-15&rft.volume=308&rft.issue=10&rft.spage=E879&rft.epage=E890&rft.pages=E879-E890&rft.issn=0193-1849&rft.eissn=1522-1555&rft.coden=AJPMD9&rft_id=info:doi/10.1152/ajpendo.00530.2014&rft_dat=%3Cproquest_pubme%3E1694984076%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684376648&rft_id=info:pmid/25783895&rfr_iscdi=true |