Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk su...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2015-05, Vol.26 (9), p.1743-1751 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1751 |
---|---|
container_issue | 9 |
container_start_page | 1743 |
container_title | Molecular biology of the cell |
container_volume | 26 |
creator | Hayashi, Shinichi Okada, Yasushi |
description | Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. |
doi_str_mv | 10.1091/mbc.E14-08-1287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4436784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677890093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</originalsourceid><addsrcrecordid>eNpVkUlLxTAUhYMozmt30qWbam7mbAQRJxDc6E4IeWnyjLZNbVrFf28eDugq95KTk3P4EDoAfAxYw0m3cMcXwGqsaiBKrqFt0FTXjCuxXmbMdQ2csC20k_MzxsCYkJtoi3AJEhTfRo8P7TTaYPNU5Xnw4-hzaucppr4K7ZzK6nzvfBU7u4z9snqP01OVh9j3q62J-aVyqQ_J2bbqohtTdmnwVRqm6PIe2gi2zX7_-9xFD5cX9-fX9e3d1c352W3tqKZTSe4d9lbQhpeJSGUt8TIQFtxCWKItI7JpBHeBex4UBQeWWKDaC-E0AN1Fp1--w7zofFMSl06tGcaSevwwyUbz_6aPT2aZ3gxjVEjFisHRt8GYXmefJ9PFUrxtbe_TnA0IKZXGWNMiPfmSrrrm0YffbwCbFRNTmJjCxGBlVkzKi8O_6X71PxDoJ0YCjFE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677890093</pqid></control><display><type>article</type><title>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hayashi, Shinichi ; Okada, Yasushi</creator><contributor>Wang, Yu-Li</contributor><creatorcontrib>Hayashi, Shinichi ; Okada, Yasushi ; Wang, Yu-Li</creatorcontrib><description>Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E14-08-1287</identifier><identifier>PMID: 25717185</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; Cell Line ; Endosomes - ultrastructure ; Microscopy, Confocal ; Microtubules - ultrastructure ; Mitochondria - ultrastructure ; Mitochondrial Membranes - ultrastructure ; Optical Imaging - instrumentation ; Potoroidae ; Single-Cell Analysis - instrumentation ; Transport Vesicles - ultrastructure</subject><ispartof>Molecular biology of the cell, 2015-05, Vol.26 (9), p.1743-1751</ispartof><rights>2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</citedby><cites>FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436784/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436784/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25717185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yu-Li</contributor><creatorcontrib>Hayashi, Shinichi</creatorcontrib><creatorcontrib>Okada, Yasushi</creatorcontrib><title>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Endosomes - ultrastructure</subject><subject>Microscopy, Confocal</subject><subject>Microtubules - ultrastructure</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Membranes - ultrastructure</subject><subject>Optical Imaging - instrumentation</subject><subject>Potoroidae</subject><subject>Single-Cell Analysis - instrumentation</subject><subject>Transport Vesicles - ultrastructure</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUlLxTAUhYMozmt30qWbam7mbAQRJxDc6E4IeWnyjLZNbVrFf28eDugq95KTk3P4EDoAfAxYw0m3cMcXwGqsaiBKrqFt0FTXjCuxXmbMdQ2csC20k_MzxsCYkJtoi3AJEhTfRo8P7TTaYPNU5Xnw4-hzaucppr4K7ZzK6nzvfBU7u4z9snqP01OVh9j3q62J-aVyqQ_J2bbqohtTdmnwVRqm6PIe2gi2zX7_-9xFD5cX9-fX9e3d1c352W3tqKZTSe4d9lbQhpeJSGUt8TIQFtxCWKItI7JpBHeBex4UBQeWWKDaC-E0AN1Fp1--w7zofFMSl06tGcaSevwwyUbz_6aPT2aZ3gxjVEjFisHRt8GYXmefJ9PFUrxtbe_TnA0IKZXGWNMiPfmSrrrm0YffbwCbFRNTmJjCxGBlVkzKi8O_6X71PxDoJ0YCjFE</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Hayashi, Shinichi</creator><creator>Okada, Yasushi</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</title><author>Hayashi, Shinichi ; Okada, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Endosomes - ultrastructure</topic><topic>Microscopy, Confocal</topic><topic>Microtubules - ultrastructure</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Membranes - ultrastructure</topic><topic>Optical Imaging - instrumentation</topic><topic>Potoroidae</topic><topic>Single-Cell Analysis - instrumentation</topic><topic>Transport Vesicles - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Shinichi</creatorcontrib><creatorcontrib>Okada, Yasushi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Shinichi</au><au>Okada, Yasushi</au><au>Wang, Yu-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>26</volume><issue>9</issue><spage>1743</spage><epage>1751</epage><pages>1743-1751</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>25717185</pmid><doi>10.1091/mbc.E14-08-1287</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2015-05, Vol.26 (9), p.1743-1751 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4436784 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Cell Line Endosomes - ultrastructure Microscopy, Confocal Microtubules - ultrastructure Mitochondria - ultrastructure Mitochondrial Membranes - ultrastructure Optical Imaging - instrumentation Potoroidae Single-Cell Analysis - instrumentation Transport Vesicles - ultrastructure |
title | Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20superresolution%20fluorescence%20imaging%20with%20spinning%20disk%20confocal%20microscope%20optics&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Hayashi,%20Shinichi&rft.date=2015-05-01&rft.volume=26&rft.issue=9&rft.spage=1743&rft.epage=1751&rft.pages=1743-1751&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E14-08-1287&rft_dat=%3Cproquest_pubme%3E1677890093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677890093&rft_id=info:pmid/25717185&rfr_iscdi=true |