Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics

Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2015-05, Vol.26 (9), p.1743-1751
Hauptverfasser: Hayashi, Shinichi, Okada, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1751
container_issue 9
container_start_page 1743
container_title Molecular biology of the cell
container_volume 26
creator Hayashi, Shinichi
Okada, Yasushi
description Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.
doi_str_mv 10.1091/mbc.E14-08-1287
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4436784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677890093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</originalsourceid><addsrcrecordid>eNpVkUlLxTAUhYMozmt30qWbam7mbAQRJxDc6E4IeWnyjLZNbVrFf28eDugq95KTk3P4EDoAfAxYw0m3cMcXwGqsaiBKrqFt0FTXjCuxXmbMdQ2csC20k_MzxsCYkJtoi3AJEhTfRo8P7TTaYPNU5Xnw4-hzaucppr4K7ZzK6nzvfBU7u4z9snqP01OVh9j3q62J-aVyqQ_J2bbqohtTdmnwVRqm6PIe2gi2zX7_-9xFD5cX9-fX9e3d1c352W3tqKZTSe4d9lbQhpeJSGUt8TIQFtxCWKItI7JpBHeBex4UBQeWWKDaC-E0AN1Fp1--w7zofFMSl06tGcaSevwwyUbz_6aPT2aZ3gxjVEjFisHRt8GYXmefJ9PFUrxtbe_TnA0IKZXGWNMiPfmSrrrm0YffbwCbFRNTmJjCxGBlVkzKi8O_6X71PxDoJ0YCjFE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677890093</pqid></control><display><type>article</type><title>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hayashi, Shinichi ; Okada, Yasushi</creator><contributor>Wang, Yu-Li</contributor><creatorcontrib>Hayashi, Shinichi ; Okada, Yasushi ; Wang, Yu-Li</creatorcontrib><description>Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E14-08-1287</identifier><identifier>PMID: 25717185</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; Cell Line ; Endosomes - ultrastructure ; Microscopy, Confocal ; Microtubules - ultrastructure ; Mitochondria - ultrastructure ; Mitochondrial Membranes - ultrastructure ; Optical Imaging - instrumentation ; Potoroidae ; Single-Cell Analysis - instrumentation ; Transport Vesicles - ultrastructure</subject><ispartof>Molecular biology of the cell, 2015-05, Vol.26 (9), p.1743-1751</ispartof><rights>2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</citedby><cites>FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436784/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436784/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25717185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yu-Li</contributor><creatorcontrib>Hayashi, Shinichi</creatorcontrib><creatorcontrib>Okada, Yasushi</creatorcontrib><title>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Endosomes - ultrastructure</subject><subject>Microscopy, Confocal</subject><subject>Microtubules - ultrastructure</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Membranes - ultrastructure</subject><subject>Optical Imaging - instrumentation</subject><subject>Potoroidae</subject><subject>Single-Cell Analysis - instrumentation</subject><subject>Transport Vesicles - ultrastructure</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUlLxTAUhYMozmt30qWbam7mbAQRJxDc6E4IeWnyjLZNbVrFf28eDugq95KTk3P4EDoAfAxYw0m3cMcXwGqsaiBKrqFt0FTXjCuxXmbMdQ2csC20k_MzxsCYkJtoi3AJEhTfRo8P7TTaYPNU5Xnw4-hzaucppr4K7ZzK6nzvfBU7u4z9snqP01OVh9j3q62J-aVyqQ_J2bbqohtTdmnwVRqm6PIe2gi2zX7_-9xFD5cX9-fX9e3d1c352W3tqKZTSe4d9lbQhpeJSGUt8TIQFtxCWKItI7JpBHeBex4UBQeWWKDaC-E0AN1Fp1--w7zofFMSl06tGcaSevwwyUbz_6aPT2aZ3gxjVEjFisHRt8GYXmefJ9PFUrxtbe_TnA0IKZXGWNMiPfmSrrrm0YffbwCbFRNTmJjCxGBlVkzKi8O_6X71PxDoJ0YCjFE</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Hayashi, Shinichi</creator><creator>Okada, Yasushi</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</title><author>Hayashi, Shinichi ; Okada, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-12ec0ea63d52ec278aa2e7f24fcb6a29a427dd65cf5e5f831c1a2a139e66c9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Endosomes - ultrastructure</topic><topic>Microscopy, Confocal</topic><topic>Microtubules - ultrastructure</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Membranes - ultrastructure</topic><topic>Optical Imaging - instrumentation</topic><topic>Potoroidae</topic><topic>Single-Cell Analysis - instrumentation</topic><topic>Transport Vesicles - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Shinichi</creatorcontrib><creatorcontrib>Okada, Yasushi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Shinichi</au><au>Okada, Yasushi</au><au>Wang, Yu-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>26</volume><issue>9</issue><spage>1743</spage><epage>1751</epage><pages>1743-1751</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>25717185</pmid><doi>10.1091/mbc.E14-08-1287</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2015-05, Vol.26 (9), p.1743-1751
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4436784
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Cell Line
Endosomes - ultrastructure
Microscopy, Confocal
Microtubules - ultrastructure
Mitochondria - ultrastructure
Mitochondrial Membranes - ultrastructure
Optical Imaging - instrumentation
Potoroidae
Single-Cell Analysis - instrumentation
Transport Vesicles - ultrastructure
title Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20superresolution%20fluorescence%20imaging%20with%20spinning%20disk%20confocal%20microscope%20optics&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Hayashi,%20Shinichi&rft.date=2015-05-01&rft.volume=26&rft.issue=9&rft.spage=1743&rft.epage=1751&rft.pages=1743-1751&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E14-08-1287&rft_dat=%3Cproquest_pubme%3E1677890093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677890093&rft_id=info:pmid/25717185&rfr_iscdi=true