Lattice-Matched InGaAs–InAlAs Core–Shell Nanowires with Improved Luminescence and Photoresponse Properties
Core–shell nanowires (NW) have become very prominent systems for band engineered NW heterostructures that effectively suppress detrimental surface states and improve performance of related devices. This concept is particularly attractive for material systems with high intrinsic surface state densiti...
Gespeichert in:
Veröffentlicht in: | Nano letters 2015-05, Vol.15 (5), p.3533-3540 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3540 |
---|---|
container_issue | 5 |
container_start_page | 3533 |
container_title | Nano letters |
container_volume | 15 |
creator | Treu, Julian Stettner, Thomas Watzinger, Marc Morkötter, Stefanie Döblinger, Markus Matich, Sonja Saller, Kai Bichler, Max Abstreiter, Gerhard Finley, Jonathan J Stangl, Julian Koblmüller, Gregor |
description | Core–shell nanowires (NW) have become very prominent systems for band engineered NW heterostructures that effectively suppress detrimental surface states and improve performance of related devices. This concept is particularly attractive for material systems with high intrinsic surface state densities, such as the low-bandgap In-containing group-III arsenides, however selection of inappropriate, lattice-mismatched shell materials have frequently caused undesired strain accumulation, defect formation, and modifications of the electronic band structure. Here, we demonstrate the realization of closely lattice-matched radial InGaAs–InAlAs core–shell NWs tunable over large compositional ranges [x(Ga)∼y(Al) = 0.2–0.65] via completely catalyst-free selective-area molecular beam epitaxy. On the basis of high-resolution X-ray reciprocal space maps the strain in the NW core is found to be insignificant (ε < 0.1%), which is further reflected by the absence of strain-induced spectral shifts in luminescence spectra and nearly unmodified band structure. Remarkably, the lattice-matched InAlAs shell strongly enhances the optical efficiency by up to 2 orders of magnitude, where the efficiency enhancement scales directly with increasing band offset as both Ga- and Al-contents increase. Ultimately, we fabricated vertical InGaAs−InAlAs NW/Si photovoltaic cells and show that the enhanced internal quantum efficiency is directly translated to an energy conversion efficiency that is ∼3–4 times larger as compared to an unpassivated cell. These results highlight the promising performance of lattice-matched III–V core–shell NW heterostructures with significant impact on future development of related nanophotonic and electronic devices. |
doi_str_mv | 10.1021/acs.nanolett.5b00979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4434527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762068942</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-33dfb0dbd0c44afd36292378101924109052f7749c100f1b5b34b82f4528e5a93</originalsourceid><addsrcrecordid>eNqFkc2O0zAUhS0EYn7gDRDKkk3K9V8Sb5CqCmYqFRgJWFtOckMySuxgOzNixzvwhjwJrtqpYAMr2_I5n8_1IeQFhRUFRl-bJqyssW7EGFeyBlClekTOqeSQF0qxx6d9Jc7IRQi3kDRcwlNyxqRiTJXinNidiXFoMH9vYtNjm23tlVmHXz9-bu16XIds4zym06cexzH7kN67HzyG7H6IfbadZu_ukmm3TIPF0KBtMDO2zW56F5MxzM4GzG68m9HHAcMz8qQzY8Dnx_WSfHn39vPmOt99vNpu1rvciIrFnPO2q6GtW2iEMF3LC6YYLysKVDFBQYFkXVkK1VCAjtay5qKuWCckq1AaxS_JmwN3XuoJ2xQsejPq2Q-T8d-1M4P--8YOvf7q7rQQPEHKBHh1BHj3bcEQ9TSk-cbRWHRL0LQsGBSVEuz_0qICJYVg-1jiIG28C8Fjd0pEQe9b1alV_dCqPraabC__nOZkeqgxCeAg2Ntv3eJt-tx_M38DM9O1VQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680954429</pqid></control><display><type>article</type><title>Lattice-Matched InGaAs–InAlAs Core–Shell Nanowires with Improved Luminescence and Photoresponse Properties</title><source>American Chemical Society</source><creator>Treu, Julian ; Stettner, Thomas ; Watzinger, Marc ; Morkötter, Stefanie ; Döblinger, Markus ; Matich, Sonja ; Saller, Kai ; Bichler, Max ; Abstreiter, Gerhard ; Finley, Jonathan J ; Stangl, Julian ; Koblmüller, Gregor</creator><creatorcontrib>Treu, Julian ; Stettner, Thomas ; Watzinger, Marc ; Morkötter, Stefanie ; Döblinger, Markus ; Matich, Sonja ; Saller, Kai ; Bichler, Max ; Abstreiter, Gerhard ; Finley, Jonathan J ; Stangl, Julian ; Koblmüller, Gregor</creatorcontrib><description>Core–shell nanowires (NW) have become very prominent systems for band engineered NW heterostructures that effectively suppress detrimental surface states and improve performance of related devices. This concept is particularly attractive for material systems with high intrinsic surface state densities, such as the low-bandgap In-containing group-III arsenides, however selection of inappropriate, lattice-mismatched shell materials have frequently caused undesired strain accumulation, defect formation, and modifications of the electronic band structure. Here, we demonstrate the realization of closely lattice-matched radial InGaAs–InAlAs core–shell NWs tunable over large compositional ranges [x(Ga)∼y(Al) = 0.2–0.65] via completely catalyst-free selective-area molecular beam epitaxy. On the basis of high-resolution X-ray reciprocal space maps the strain in the NW core is found to be insignificant (ε < 0.1%), which is further reflected by the absence of strain-induced spectral shifts in luminescence spectra and nearly unmodified band structure. Remarkably, the lattice-matched InAlAs shell strongly enhances the optical efficiency by up to 2 orders of magnitude, where the efficiency enhancement scales directly with increasing band offset as both Ga- and Al-contents increase. Ultimately, we fabricated vertical InGaAs−InAlAs NW/Si photovoltaic cells and show that the enhanced internal quantum efficiency is directly translated to an energy conversion efficiency that is ∼3–4 times larger as compared to an unpassivated cell. These results highlight the promising performance of lattice-matched III–V core–shell NW heterostructures with significant impact on future development of related nanophotonic and electronic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b00979</identifier><identifier>PMID: 25922974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Band structure of solids ; Catalysts ; Energy conversion efficiency ; Letter ; Materials selection ; Nanostructure ; Nanowires ; Spectra ; Strain</subject><ispartof>Nano letters, 2015-05, Vol.15 (5), p.3533-3540</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-33dfb0dbd0c44afd36292378101924109052f7749c100f1b5b34b82f4528e5a93</citedby><cites>FETCH-LOGICAL-a482t-33dfb0dbd0c44afd36292378101924109052f7749c100f1b5b34b82f4528e5a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b00979$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b00979$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25922974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Treu, Julian</creatorcontrib><creatorcontrib>Stettner, Thomas</creatorcontrib><creatorcontrib>Watzinger, Marc</creatorcontrib><creatorcontrib>Morkötter, Stefanie</creatorcontrib><creatorcontrib>Döblinger, Markus</creatorcontrib><creatorcontrib>Matich, Sonja</creatorcontrib><creatorcontrib>Saller, Kai</creatorcontrib><creatorcontrib>Bichler, Max</creatorcontrib><creatorcontrib>Abstreiter, Gerhard</creatorcontrib><creatorcontrib>Finley, Jonathan J</creatorcontrib><creatorcontrib>Stangl, Julian</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><title>Lattice-Matched InGaAs–InAlAs Core–Shell Nanowires with Improved Luminescence and Photoresponse Properties</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Core–shell nanowires (NW) have become very prominent systems for band engineered NW heterostructures that effectively suppress detrimental surface states and improve performance of related devices. This concept is particularly attractive for material systems with high intrinsic surface state densities, such as the low-bandgap In-containing group-III arsenides, however selection of inappropriate, lattice-mismatched shell materials have frequently caused undesired strain accumulation, defect formation, and modifications of the electronic band structure. Here, we demonstrate the realization of closely lattice-matched radial InGaAs–InAlAs core–shell NWs tunable over large compositional ranges [x(Ga)∼y(Al) = 0.2–0.65] via completely catalyst-free selective-area molecular beam epitaxy. On the basis of high-resolution X-ray reciprocal space maps the strain in the NW core is found to be insignificant (ε < 0.1%), which is further reflected by the absence of strain-induced spectral shifts in luminescence spectra and nearly unmodified band structure. Remarkably, the lattice-matched InAlAs shell strongly enhances the optical efficiency by up to 2 orders of magnitude, where the efficiency enhancement scales directly with increasing band offset as both Ga- and Al-contents increase. Ultimately, we fabricated vertical InGaAs−InAlAs NW/Si photovoltaic cells and show that the enhanced internal quantum efficiency is directly translated to an energy conversion efficiency that is ∼3–4 times larger as compared to an unpassivated cell. These results highlight the promising performance of lattice-matched III–V core–shell NW heterostructures with significant impact on future development of related nanophotonic and electronic devices.</description><subject>Band structure of solids</subject><subject>Catalysts</subject><subject>Energy conversion efficiency</subject><subject>Letter</subject><subject>Materials selection</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Spectra</subject><subject>Strain</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqFkc2O0zAUhS0EYn7gDRDKkk3K9V8Sb5CqCmYqFRgJWFtOckMySuxgOzNixzvwhjwJrtqpYAMr2_I5n8_1IeQFhRUFRl-bJqyssW7EGFeyBlClekTOqeSQF0qxx6d9Jc7IRQi3kDRcwlNyxqRiTJXinNidiXFoMH9vYtNjm23tlVmHXz9-bu16XIds4zym06cexzH7kN67HzyG7H6IfbadZu_ukmm3TIPF0KBtMDO2zW56F5MxzM4GzG68m9HHAcMz8qQzY8Dnx_WSfHn39vPmOt99vNpu1rvciIrFnPO2q6GtW2iEMF3LC6YYLysKVDFBQYFkXVkK1VCAjtay5qKuWCckq1AaxS_JmwN3XuoJ2xQsejPq2Q-T8d-1M4P--8YOvf7q7rQQPEHKBHh1BHj3bcEQ9TSk-cbRWHRL0LQsGBSVEuz_0qICJYVg-1jiIG28C8Fjd0pEQe9b1alV_dCqPraabC__nOZkeqgxCeAg2Ntv3eJt-tx_M38DM9O1VQ</recordid><startdate>20150513</startdate><enddate>20150513</enddate><creator>Treu, Julian</creator><creator>Stettner, Thomas</creator><creator>Watzinger, Marc</creator><creator>Morkötter, Stefanie</creator><creator>Döblinger, Markus</creator><creator>Matich, Sonja</creator><creator>Saller, Kai</creator><creator>Bichler, Max</creator><creator>Abstreiter, Gerhard</creator><creator>Finley, Jonathan J</creator><creator>Stangl, Julian</creator><creator>Koblmüller, Gregor</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20150513</creationdate><title>Lattice-Matched InGaAs–InAlAs Core–Shell Nanowires with Improved Luminescence and Photoresponse Properties</title><author>Treu, Julian ; Stettner, Thomas ; Watzinger, Marc ; Morkötter, Stefanie ; Döblinger, Markus ; Matich, Sonja ; Saller, Kai ; Bichler, Max ; Abstreiter, Gerhard ; Finley, Jonathan J ; Stangl, Julian ; Koblmüller, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-33dfb0dbd0c44afd36292378101924109052f7749c100f1b5b34b82f4528e5a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Band structure of solids</topic><topic>Catalysts</topic><topic>Energy conversion efficiency</topic><topic>Letter</topic><topic>Materials selection</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Spectra</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treu, Julian</creatorcontrib><creatorcontrib>Stettner, Thomas</creatorcontrib><creatorcontrib>Watzinger, Marc</creatorcontrib><creatorcontrib>Morkötter, Stefanie</creatorcontrib><creatorcontrib>Döblinger, Markus</creatorcontrib><creatorcontrib>Matich, Sonja</creatorcontrib><creatorcontrib>Saller, Kai</creatorcontrib><creatorcontrib>Bichler, Max</creatorcontrib><creatorcontrib>Abstreiter, Gerhard</creatorcontrib><creatorcontrib>Finley, Jonathan J</creatorcontrib><creatorcontrib>Stangl, Julian</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treu, Julian</au><au>Stettner, Thomas</au><au>Watzinger, Marc</au><au>Morkötter, Stefanie</au><au>Döblinger, Markus</au><au>Matich, Sonja</au><au>Saller, Kai</au><au>Bichler, Max</au><au>Abstreiter, Gerhard</au><au>Finley, Jonathan J</au><au>Stangl, Julian</au><au>Koblmüller, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice-Matched InGaAs–InAlAs Core–Shell Nanowires with Improved Luminescence and Photoresponse Properties</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-05-13</date><risdate>2015</risdate><volume>15</volume><issue>5</issue><spage>3533</spage><epage>3540</epage><pages>3533-3540</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Core–shell nanowires (NW) have become very prominent systems for band engineered NW heterostructures that effectively suppress detrimental surface states and improve performance of related devices. This concept is particularly attractive for material systems with high intrinsic surface state densities, such as the low-bandgap In-containing group-III arsenides, however selection of inappropriate, lattice-mismatched shell materials have frequently caused undesired strain accumulation, defect formation, and modifications of the electronic band structure. Here, we demonstrate the realization of closely lattice-matched radial InGaAs–InAlAs core–shell NWs tunable over large compositional ranges [x(Ga)∼y(Al) = 0.2–0.65] via completely catalyst-free selective-area molecular beam epitaxy. On the basis of high-resolution X-ray reciprocal space maps the strain in the NW core is found to be insignificant (ε < 0.1%), which is further reflected by the absence of strain-induced spectral shifts in luminescence spectra and nearly unmodified band structure. Remarkably, the lattice-matched InAlAs shell strongly enhances the optical efficiency by up to 2 orders of magnitude, where the efficiency enhancement scales directly with increasing band offset as both Ga- and Al-contents increase. Ultimately, we fabricated vertical InGaAs−InAlAs NW/Si photovoltaic cells and show that the enhanced internal quantum efficiency is directly translated to an energy conversion efficiency that is ∼3–4 times larger as compared to an unpassivated cell. These results highlight the promising performance of lattice-matched III–V core–shell NW heterostructures with significant impact on future development of related nanophotonic and electronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25922974</pmid><doi>10.1021/acs.nanolett.5b00979</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2015-05, Vol.15 (5), p.3533-3540 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4434527 |
source | American Chemical Society |
subjects | Band structure of solids Catalysts Energy conversion efficiency Letter Materials selection Nanostructure Nanowires Spectra Strain |
title | Lattice-Matched InGaAs–InAlAs Core–Shell Nanowires with Improved Luminescence and Photoresponse Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice-Matched%20InGaAs%E2%80%93InAlAs%20Core%E2%80%93Shell%20Nanowires%20with%20Improved%20Luminescence%20and%20Photoresponse%20Properties&rft.jtitle=Nano%20letters&rft.au=Treu,%20Julian&rft.date=2015-05-13&rft.volume=15&rft.issue=5&rft.spage=3533&rft.epage=3540&rft.pages=3533-3540&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b00979&rft_dat=%3Cproquest_pubme%3E1762068942%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680954429&rft_id=info:pmid/25922974&rfr_iscdi=true |