An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation

N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and orni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-05, Vol.290 (20), p.12676-12688
Hauptverfasser: Binda, Claudia, Robinson, Reeder M., Martin del Campo, Julia S., Keul, Nicholas D., Rodriguez, Pedro J., Robinson, Howard H., Mattevi, Andrea, Sobrado, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12688
container_issue 20
container_start_page 12676
container_title The Journal of biological chemistry
container_volume 290
creator Binda, Claudia
Robinson, Reeder M.
Martin del Campo, Julia S.
Keul, Nicholas D.
Rodriguez, Pedro J.
Robinson, Howard H.
Mattevi, Andrea
Sobrado, Pablo
description N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed. Flavin-dependent lysine monooxygenases are involved in siderophore biosynthesis and are promising bacterial drug targets. Biochemical and structural characterization of lysine monooxygenase from Nocardia farcinica (NbtG) is presented. An unprecedented domain conformation blocks the proper binding of NAD(P)H in the active site, which explains the high level of uncoupling observed in NbtG. The structural and biochemical data should aid in drug design.
doi_str_mv 10.1074/jbc.M114.629485
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4432286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820337388</els_id><sourcerecordid>1681911988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-6a045d41a3f52d04c85f547d21a0d21311dbfda5fb27102f1db15bfd46c9d4403</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEotvCmRuyOHHJ1pM42eSCtNpCt9L2Q4JK3CzHH7uuEju1nRX7X_pjcTalggM-2JrxO8-M_SbJB8BzwAty_tDw-TUAmZdZTariVTIDXOVpXsDP18kM4wzSOiuqk-TU-wccF6nhbXISUzjLczxLnpYG3ZveSS6FNEEKdLO8uFujC9sxbdDKGmVdx4K2BsV4c_DaSHRtjbW_DltpmJfopgmX6M7ZvRbSoyvj9XYXfJQHG9ncDn2rzRZZhW6PNSPVD11_hCpnO_R9aHxwLEi0PggXye2x47vkjWKtl--fz7Pk_tvXH6t1urm9vFotNyknCxzSkmFSCAIsV0UmMOFVoQqyEBkwHLccQDRKsEI12QJwpmIIRcyQkteCEJyfJV8mbj80nRQ8foRjLe2d7pg7UMs0_ffG6B3d2j0lJM-yqoyATxPA-qCp5zpIvuPWGMkDhSipYRR9fu7i7OMgfaCd9ly2LTPSDp5CWUENUFdVlJ5PUu6s906ql1kA09F4Go2no_F0Mj5WfPz7CS_6P05HQT0JZPzIvZZuHFOaaLt245TC6v_CfwPlhsD-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681911988</pqid></control><display><type>article</type><title>An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Binda, Claudia ; Robinson, Reeder M. ; Martin del Campo, Julia S. ; Keul, Nicholas D. ; Rodriguez, Pedro J. ; Robinson, Howard H. ; Mattevi, Andrea ; Sobrado, Pablo</creator><creatorcontrib>Binda, Claudia ; Robinson, Reeder M. ; Martin del Campo, Julia S. ; Keul, Nicholas D. ; Rodriguez, Pedro J. ; Robinson, Howard H. ; Mattevi, Andrea ; Sobrado, Pablo ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed. Flavin-dependent lysine monooxygenases are involved in siderophore biosynthesis and are promising bacterial drug targets. Biochemical and structural characterization of lysine monooxygenase from Nocardia farcinica (NbtG) is presented. An unprecedented domain conformation blocks the proper binding of NAD(P)H in the active site, which explains the high level of uncoupling observed in NbtG. The structural and biochemical data should aid in drug design.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.629485</identifier><identifier>PMID: 25802330</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; C4a-hydroperoxyflavin ; Crystallography, X-Ray ; Enzymology ; flavin ; Flavin-Adenine Dinucleotide - chemistry ; Flavin-Adenine Dinucleotide - genetics ; Flavin-Adenine Dinucleotide - metabolism ; flavin-dependent monooxygenase ; flavoprotein ; Hydroxylation ; iron metabolism ; Lysine - chemistry ; Lysine - genetics ; Lysine - metabolism ; lysine monooxygenase ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; N-hydroxylating monooxygenases ; NADP - chemistry ; NADP - genetics ; NADP - metabolism ; Nocardia - enzymology ; Nocardia - genetics ; Oxygen Consumption - physiology ; Protein Structure, Tertiary ; siderophore ; virulence factor</subject><ispartof>The Journal of biological chemistry, 2015-05, Vol.290 (20), p.12676-12688</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-6a045d41a3f52d04c85f547d21a0d21311dbfda5fb27102f1db15bfd46c9d4403</citedby><cites>FETCH-LOGICAL-c470t-6a045d41a3f52d04c85f547d21a0d21311dbfda5fb27102f1db15bfd46c9d4403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432286/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25802330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1228916$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Binda, Claudia</creatorcontrib><creatorcontrib>Robinson, Reeder M.</creatorcontrib><creatorcontrib>Martin del Campo, Julia S.</creatorcontrib><creatorcontrib>Keul, Nicholas D.</creatorcontrib><creatorcontrib>Rodriguez, Pedro J.</creatorcontrib><creatorcontrib>Robinson, Howard H.</creatorcontrib><creatorcontrib>Mattevi, Andrea</creatorcontrib><creatorcontrib>Sobrado, Pablo</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed. Flavin-dependent lysine monooxygenases are involved in siderophore biosynthesis and are promising bacterial drug targets. Biochemical and structural characterization of lysine monooxygenase from Nocardia farcinica (NbtG) is presented. An unprecedented domain conformation blocks the proper binding of NAD(P)H in the active site, which explains the high level of uncoupling observed in NbtG. The structural and biochemical data should aid in drug design.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>C4a-hydroperoxyflavin</subject><subject>Crystallography, X-Ray</subject><subject>Enzymology</subject><subject>flavin</subject><subject>Flavin-Adenine Dinucleotide - chemistry</subject><subject>Flavin-Adenine Dinucleotide - genetics</subject><subject>Flavin-Adenine Dinucleotide - metabolism</subject><subject>flavin-dependent monooxygenase</subject><subject>flavoprotein</subject><subject>Hydroxylation</subject><subject>iron metabolism</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>lysine monooxygenase</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>N-hydroxylating monooxygenases</subject><subject>NADP - chemistry</subject><subject>NADP - genetics</subject><subject>NADP - metabolism</subject><subject>Nocardia - enzymology</subject><subject>Nocardia - genetics</subject><subject>Oxygen Consumption - physiology</subject><subject>Protein Structure, Tertiary</subject><subject>siderophore</subject><subject>virulence factor</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhiMEotvCmRuyOHHJ1pM42eSCtNpCt9L2Q4JK3CzHH7uuEju1nRX7X_pjcTalggM-2JrxO8-M_SbJB8BzwAty_tDw-TUAmZdZTariVTIDXOVpXsDP18kM4wzSOiuqk-TU-wccF6nhbXISUzjLczxLnpYG3ZveSS6FNEEKdLO8uFujC9sxbdDKGmVdx4K2BsV4c_DaSHRtjbW_DltpmJfopgmX6M7ZvRbSoyvj9XYXfJQHG9ncDn2rzRZZhW6PNSPVD11_hCpnO_R9aHxwLEi0PggXye2x47vkjWKtl--fz7Pk_tvXH6t1urm9vFotNyknCxzSkmFSCAIsV0UmMOFVoQqyEBkwHLccQDRKsEI12QJwpmIIRcyQkteCEJyfJV8mbj80nRQ8foRjLe2d7pg7UMs0_ffG6B3d2j0lJM-yqoyATxPA-qCp5zpIvuPWGMkDhSipYRR9fu7i7OMgfaCd9ly2LTPSDp5CWUENUFdVlJ5PUu6s906ql1kA09F4Go2no_F0Mj5WfPz7CS_6P05HQT0JZPzIvZZuHFOaaLt245TC6v_CfwPlhsD-</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Binda, Claudia</creator><creator>Robinson, Reeder M.</creator><creator>Martin del Campo, Julia S.</creator><creator>Keul, Nicholas D.</creator><creator>Rodriguez, Pedro J.</creator><creator>Robinson, Howard H.</creator><creator>Mattevi, Andrea</creator><creator>Sobrado, Pablo</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150515</creationdate><title>An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation</title><author>Binda, Claudia ; Robinson, Reeder M. ; Martin del Campo, Julia S. ; Keul, Nicholas D. ; Rodriguez, Pedro J. ; Robinson, Howard H. ; Mattevi, Andrea ; Sobrado, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-6a045d41a3f52d04c85f547d21a0d21311dbfda5fb27102f1db15bfd46c9d4403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>C4a-hydroperoxyflavin</topic><topic>Crystallography, X-Ray</topic><topic>Enzymology</topic><topic>flavin</topic><topic>Flavin-Adenine Dinucleotide - chemistry</topic><topic>Flavin-Adenine Dinucleotide - genetics</topic><topic>Flavin-Adenine Dinucleotide - metabolism</topic><topic>flavin-dependent monooxygenase</topic><topic>flavoprotein</topic><topic>Hydroxylation</topic><topic>iron metabolism</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>lysine monooxygenase</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>N-hydroxylating monooxygenases</topic><topic>NADP - chemistry</topic><topic>NADP - genetics</topic><topic>NADP - metabolism</topic><topic>Nocardia - enzymology</topic><topic>Nocardia - genetics</topic><topic>Oxygen Consumption - physiology</topic><topic>Protein Structure, Tertiary</topic><topic>siderophore</topic><topic>virulence factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binda, Claudia</creatorcontrib><creatorcontrib>Robinson, Reeder M.</creatorcontrib><creatorcontrib>Martin del Campo, Julia S.</creatorcontrib><creatorcontrib>Keul, Nicholas D.</creatorcontrib><creatorcontrib>Rodriguez, Pedro J.</creatorcontrib><creatorcontrib>Robinson, Howard H.</creatorcontrib><creatorcontrib>Mattevi, Andrea</creatorcontrib><creatorcontrib>Sobrado, Pablo</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binda, Claudia</au><au>Robinson, Reeder M.</au><au>Martin del Campo, Julia S.</au><au>Keul, Nicholas D.</au><au>Rodriguez, Pedro J.</au><au>Robinson, Howard H.</au><au>Mattevi, Andrea</au><au>Sobrado, Pablo</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-05-15</date><risdate>2015</risdate><volume>290</volume><issue>20</issue><spage>12676</spage><epage>12688</epage><pages>12676-12688</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed. Flavin-dependent lysine monooxygenases are involved in siderophore biosynthesis and are promising bacterial drug targets. Biochemical and structural characterization of lysine monooxygenase from Nocardia farcinica (NbtG) is presented. An unprecedented domain conformation blocks the proper binding of NAD(P)H in the active site, which explains the high level of uncoupling observed in NbtG. The structural and biochemical data should aid in drug design.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25802330</pmid><doi>10.1074/jbc.M114.629485</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2015-05, Vol.290 (20), p.12676-12688
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4432286
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
C4a-hydroperoxyflavin
Crystallography, X-Ray
Enzymology
flavin
Flavin-Adenine Dinucleotide - chemistry
Flavin-Adenine Dinucleotide - genetics
Flavin-Adenine Dinucleotide - metabolism
flavin-dependent monooxygenase
flavoprotein
Hydroxylation
iron metabolism
Lysine - chemistry
Lysine - genetics
Lysine - metabolism
lysine monooxygenase
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - metabolism
N-hydroxylating monooxygenases
NADP - chemistry
NADP - genetics
NADP - metabolism
Nocardia - enzymology
Nocardia - genetics
Oxygen Consumption - physiology
Protein Structure, Tertiary
siderophore
virulence factor
title An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Unprecedented%20NADPH%20Domain%20Conformation%20in%20Lysine%20Monooxygenase%20NbtG%20Provides%20Insights%20into%20Uncoupling%20of%20Oxygen%20Consumption%20from%20Substrate%20Hydroxylation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Binda,%20Claudia&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2015-05-15&rft.volume=290&rft.issue=20&rft.spage=12676&rft.epage=12688&rft.pages=12676-12688&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.629485&rft_dat=%3Cproquest_pubme%3E1681911988%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681911988&rft_id=info:pmid/25802330&rft_els_id=S0021925820337388&rfr_iscdi=true