CpG Preconditioning Regulates Mirna Expression That Modulates Genomic Reprogramming Associated with Neuroprotection against Ischemic Injury

Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Cerebral Blood Flow and Metabolism 2015-02, Vol.35 (2), p.257-266
Hauptverfasser: Vartanian, Keri B, Mitchell, Hugh D, Stevens, Susan L, Conrad, Valerie K, McDermott, Jason E, Stenzel-Poore, Mary P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 2
container_start_page 257
container_title Journal of Cerebral Blood Flow and Metabolism
container_volume 35
creator Vartanian, Keri B
Mitchell, Hugh D
Stevens, Susan L
Conrad, Valerie K
McDermott, Jason E
Stenzel-Poore, Mary P
description Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage.
doi_str_mv 10.1038/jcbfm.2014.193
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4426742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2014.193</sage_id><sourcerecordid>1664210492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-d30f165978dfb14ac802ac080b4c8d50bef84ac538b4f73cc0ac0b755bf083373</originalsourceid><addsrcrecordid>eNqNksGL1DAUxoMo7rh69ShFL4J0TNKkSS_CMqzjwK6KrOAtpGnaZmiTbpKq-zf4T5s647KKB0-BvN_3Xr6XD4CnCK4RLPjrvarbcY0hImtUFffAClFa5Qyi8j5YQcxQXjL-5QQ8CmEPIeQFpQ_BCaYF5yWjK_BjM22zj14rZxsTjbPGdtkn3c2DjDpkl8ZbmZ1_n7wOIVWzq17G7NI1x_pWWzcalRSTd52X47joz0JwyiSgyb6Z2Gfv9exdAqJWy4hMdtLYELNdUL1e5Du7n_3NY_CglUPQT47nKfj89vxq8y6_-LDdbc4uckU5iXlTwBaVtGK8aWtEpOIQSwU5rIniDYW1bnm6TRZr0rJCKZiqNaO0bpP_ghWn4M2h7zTXo26UttHLQUzejNLfCCeN-LNiTS8691UQgktGcGrw_NDAhWhEUCYZ69MGbfInEEMQY5Sgl8cp3l3POkQxmqD0MEir3RwEKkuCESQV_g-UYkJIWS1vf_EXundz-qNhoUgFqwKVMFHrA6W8C8Hr9tYcgmLJjfiVG7HkRqTcJMGzuyu5xX8HJQGvDkCQnb4z89_tfgJBa9AK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1649093160</pqid></control><display><type>article</type><title>CpG Preconditioning Regulates Mirna Expression That Modulates Genomic Reprogramming Associated with Neuroprotection against Ischemic Injury</title><source>Access via SAGE</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Vartanian, Keri B ; Mitchell, Hugh D ; Stevens, Susan L ; Conrad, Valerie K ; McDermott, Jason E ; Stenzel-Poore, Mary P</creator><creatorcontrib>Vartanian, Keri B ; Mitchell, Hugh D ; Stevens, Susan L ; Conrad, Valerie K ; McDermott, Jason E ; Stenzel-Poore, Mary P ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2014.193</identifier><identifier>PMID: 25388675</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adjuvants, Immunologic - pharmacology ; Animals ; Brain Ischemia - drug therapy ; Brain Ischemia - metabolism ; Gene Expression Regulation - drug effects ; Male ; Mice ; MicroRNAs - biosynthesis ; Neuroprotective Agents - pharmacology ; Oligodeoxyribonucleotides - pharmacology ; Oligonucleotide Array Sequence Analysis ; Original ; Stroke - drug therapy ; Stroke - metabolism ; Stroke - pathology ; systems biology, microRNA, bioinformatics, stroke, computational biology</subject><ispartof>Journal of Cerebral Blood Flow and Metabolism, 2015-02, Vol.35 (2), p.257-266</ispartof><rights>2015 ISCBFM</rights><rights>Copyright Nature Publishing Group Feb 2015</rights><rights>Copyright © 2015 International Society for Cerebral Blood Flow &amp; Metabolism, Inc. 2015 International Society for Cerebral Blood Flow &amp; Metabolism, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-d30f165978dfb14ac802ac080b4c8d50bef84ac538b4f73cc0ac0b755bf083373</citedby><cites>FETCH-LOGICAL-c584t-d30f165978dfb14ac802ac080b4c8d50bef84ac538b4f73cc0ac0b755bf083373</cites><orcidid>0000000329612572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426742/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426742/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,21819,27924,27925,43621,43622,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25388675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1710221$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vartanian, Keri B</creatorcontrib><creatorcontrib>Mitchell, Hugh D</creatorcontrib><creatorcontrib>Stevens, Susan L</creatorcontrib><creatorcontrib>Conrad, Valerie K</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Stenzel-Poore, Mary P</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>CpG Preconditioning Regulates Mirna Expression That Modulates Genomic Reprogramming Associated with Neuroprotection against Ischemic Injury</title><title>Journal of Cerebral Blood Flow and Metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage.</description><subject>Adjuvants, Immunologic - pharmacology</subject><subject>Animals</subject><subject>Brain Ischemia - drug therapy</subject><subject>Brain Ischemia - metabolism</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Male</subject><subject>Mice</subject><subject>MicroRNAs - biosynthesis</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Oligodeoxyribonucleotides - pharmacology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Original</subject><subject>Stroke - drug therapy</subject><subject>Stroke - metabolism</subject><subject>Stroke - pathology</subject><subject>systems biology, microRNA, bioinformatics, stroke, computational biology</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNksGL1DAUxoMo7rh69ShFL4J0TNKkSS_CMqzjwK6KrOAtpGnaZmiTbpKq-zf4T5s647KKB0-BvN_3Xr6XD4CnCK4RLPjrvarbcY0hImtUFffAClFa5Qyi8j5YQcxQXjL-5QQ8CmEPIeQFpQ_BCaYF5yWjK_BjM22zj14rZxsTjbPGdtkn3c2DjDpkl8ZbmZ1_n7wOIVWzq17G7NI1x_pWWzcalRSTd52X47joz0JwyiSgyb6Z2Gfv9exdAqJWy4hMdtLYELNdUL1e5Du7n_3NY_CglUPQT47nKfj89vxq8y6_-LDdbc4uckU5iXlTwBaVtGK8aWtEpOIQSwU5rIniDYW1bnm6TRZr0rJCKZiqNaO0bpP_ghWn4M2h7zTXo26UttHLQUzejNLfCCeN-LNiTS8691UQgktGcGrw_NDAhWhEUCYZ69MGbfInEEMQY5Sgl8cp3l3POkQxmqD0MEir3RwEKkuCESQV_g-UYkJIWS1vf_EXundz-qNhoUgFqwKVMFHrA6W8C8Hr9tYcgmLJjfiVG7HkRqTcJMGzuyu5xX8HJQGvDkCQnb4z89_tfgJBa9AK</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Vartanian, Keri B</creator><creator>Mitchell, Hugh D</creator><creator>Stevens, Susan L</creator><creator>Conrad, Valerie K</creator><creator>McDermott, Jason E</creator><creator>Stenzel-Poore, Mary P</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000000329612572</orcidid></search><sort><creationdate>20150201</creationdate><title>CpG Preconditioning Regulates Mirna Expression That Modulates Genomic Reprogramming Associated with Neuroprotection against Ischemic Injury</title><author>Vartanian, Keri B ; Mitchell, Hugh D ; Stevens, Susan L ; Conrad, Valerie K ; McDermott, Jason E ; Stenzel-Poore, Mary P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-d30f165978dfb14ac802ac080b4c8d50bef84ac538b4f73cc0ac0b755bf083373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjuvants, Immunologic - pharmacology</topic><topic>Animals</topic><topic>Brain Ischemia - drug therapy</topic><topic>Brain Ischemia - metabolism</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Male</topic><topic>Mice</topic><topic>MicroRNAs - biosynthesis</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Oligodeoxyribonucleotides - pharmacology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Original</topic><topic>Stroke - drug therapy</topic><topic>Stroke - metabolism</topic><topic>Stroke - pathology</topic><topic>systems biology, microRNA, bioinformatics, stroke, computational biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vartanian, Keri B</creatorcontrib><creatorcontrib>Mitchell, Hugh D</creatorcontrib><creatorcontrib>Stevens, Susan L</creatorcontrib><creatorcontrib>Conrad, Valerie K</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Stenzel-Poore, Mary P</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Cerebral Blood Flow and Metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vartanian, Keri B</au><au>Mitchell, Hugh D</au><au>Stevens, Susan L</au><au>Conrad, Valerie K</au><au>McDermott, Jason E</au><au>Stenzel-Poore, Mary P</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CpG Preconditioning Regulates Mirna Expression That Modulates Genomic Reprogramming Associated with Neuroprotection against Ischemic Injury</atitle><jtitle>Journal of Cerebral Blood Flow and Metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>35</volume><issue>2</issue><spage>257</spage><epage>266</epage><pages>257-266</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>25388675</pmid><doi>10.1038/jcbfm.2014.193</doi><tpages>10</tpages><orcidid>https://orcid.org/0000000329612572</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of Cerebral Blood Flow and Metabolism, 2015-02, Vol.35 (2), p.257-266
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4426742
source Access via SAGE; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adjuvants, Immunologic - pharmacology
Animals
Brain Ischemia - drug therapy
Brain Ischemia - metabolism
Gene Expression Regulation - drug effects
Male
Mice
MicroRNAs - biosynthesis
Neuroprotective Agents - pharmacology
Oligodeoxyribonucleotides - pharmacology
Oligonucleotide Array Sequence Analysis
Original
Stroke - drug therapy
Stroke - metabolism
Stroke - pathology
systems biology, microRNA, bioinformatics, stroke, computational biology
title CpG Preconditioning Regulates Mirna Expression That Modulates Genomic Reprogramming Associated with Neuroprotection against Ischemic Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CpG%20Preconditioning%20Regulates%20Mirna%20Expression%20That%20Modulates%20Genomic%20Reprogramming%20Associated%20with%20Neuroprotection%20against%20Ischemic%20Injury&rft.jtitle=Journal%20of%20Cerebral%20Blood%20Flow%20and%20Metabolism&rft.au=Vartanian,%20Keri%20B&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2015-02-01&rft.volume=35&rft.issue=2&rft.spage=257&rft.epage=266&rft.pages=257-266&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1038/jcbfm.2014.193&rft_dat=%3Cproquest_pubme%3E1664210492%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1649093160&rft_id=info:pmid/25388675&rft_sage_id=10.1038_jcbfm.2014.193&rfr_iscdi=true