Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin‐deficient mice
Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest tha...
Gespeichert in:
Veröffentlicht in: | Physiological reports 2015-04, Vol.3 (4), p.e12366-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e12366 |
container_title | Physiological reports |
container_volume | 3 |
creator | Hernández‐Ochoa, Erick O. Pratt, Stephen J. P. Garcia‐Pelagio, Karla P. Schneider, Martin F. Lovering, Richard M. |
description | Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild‐type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high‐speed confocal microscopy and the voltage‐sensitive indicator di‐8‐butyl‐amino‐naphthyl‐ethylene‐pyridinium‐propyl‐sulfonate (di‐8‐ANEPPS) to assess the action potential (AP) properties. We also examined AP‐induced Ca2+ transients using high‐speed confocal microscopy with rhod‐2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP‐induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles.
In Duchenne muscular dystrophy (DMD), muscle weakness and fragility are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. This study, using the murine model for DMD, supports the notion that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in action potential properties, calcium signals, and membrane biomechanics indicate changes in excitability, remodeling of the |
doi_str_mv | 10.14814/phy2.12366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4425971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675875038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4486-56db78a65bf3943577e50b20b529c673b1e67990e313535a6ca3d19aa83a2f0e3</originalsourceid><addsrcrecordid>eNp9kc1qFTEYhoMotrRduZeAG0FOm5_Jz2wEqdYWCrpQ0FXIZJJzUjLJmMy0zM5L6DV6JcZz2lJduMpH8vDk5XsBeIHRMW4kbk7GzUKOMaGcPwH7BDG8klh8e_po3gNHpVwhhDCitEXNc7BHWIuEkGIf3Lz3Jc_j5FOEyUFtttOYJhsnrwPUsYdGB-PnARa_jjr4uIZjTqPNk7cF-ggHHVzKg-3hsCTnO5sLdDkNsF_KVMmNj79-3vbWeeOrFg7e2EPwzOlQ7NHdeQC-nn34cnq-uvz08eL03eXKNI3kK8b7TkjNWedo21AmhGWoI6hjpDVc0A5bLtoWWYopo0xzo2mPW60l1cTV6wPwducd564mNPX_rIMasx90XlTSXv39Ev1GrdO1apq6JIGr4PWdIKcfsy2TGnwxNgQdbZqLwlwwKRiisqKv_kGv0pzryooiqMbDsrKVerOjTE6lZOsewmCktp2qP52qbaeVfvk4_wN732AFyA648cEu_3Opz-ffyc76G8dhr-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035318675</pqid></control><display><type>article</type><title>Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin‐deficient mice</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hernández‐Ochoa, Erick O. ; Pratt, Stephen J. P. ; Garcia‐Pelagio, Karla P. ; Schneider, Martin F. ; Lovering, Richard M.</creator><creatorcontrib>Hernández‐Ochoa, Erick O. ; Pratt, Stephen J. P. ; Garcia‐Pelagio, Karla P. ; Schneider, Martin F. ; Lovering, Richard M.</creatorcontrib><description>Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild‐type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high‐speed confocal microscopy and the voltage‐sensitive indicator di‐8‐butyl‐amino‐naphthyl‐ethylene‐pyridinium‐propyl‐sulfonate (di‐8‐ANEPPS) to assess the action potential (AP) properties. We also examined AP‐induced Ca2+ transients using high‐speed confocal microscopy with rhod‐2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP‐induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles.
In Duchenne muscular dystrophy (DMD), muscle weakness and fragility are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. This study, using the murine model for DMD, supports the notion that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in action potential properties, calcium signals, and membrane biomechanics indicate changes in excitability, remodeling of the global calcium signal, and the likelihood of inappropriate contractile responses such as asynchronous sarcomere shortening.</description><identifier>ISSN: 2051-817X</identifier><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.12366</identifier><identifier>PMID: 25907787</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Action potential ; animal model of muscular dystrophy ; Ca2+ indicator ; Ca2+ transients ; Calcium signalling ; Confocal microscopy ; Cytoskeleton ; Deformability ; di‐8‐ANEPPS ; Duchenne muscular dystrophy ; Duchenne's muscular dystrophy ; Dystrophin ; elastimetry ; Excitability ; MDX ; Microscopy ; Morphology ; Muscular dystrophy ; myofiber branching ; Original Research ; Physiology ; Pyridinium ; Rodents ; Sarcolemma ; sarcolemma biomechanics ; Skeletal muscle ; T‐tubule morphology ; voltage‐sensitive dye</subject><ispartof>Physiological reports, 2015-04, Vol.3 (4), p.e12366-n/a</ispartof><rights>2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4486-56db78a65bf3943577e50b20b529c673b1e67990e313535a6ca3d19aa83a2f0e3</citedby><cites>FETCH-LOGICAL-c4486-56db78a65bf3943577e50b20b529c673b1e67990e313535a6ca3d19aa83a2f0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425971/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425971/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25907787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández‐Ochoa, Erick O.</creatorcontrib><creatorcontrib>Pratt, Stephen J. P.</creatorcontrib><creatorcontrib>Garcia‐Pelagio, Karla P.</creatorcontrib><creatorcontrib>Schneider, Martin F.</creatorcontrib><creatorcontrib>Lovering, Richard M.</creatorcontrib><title>Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin‐deficient mice</title><title>Physiological reports</title><addtitle>Physiol Rep</addtitle><description>Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild‐type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high‐speed confocal microscopy and the voltage‐sensitive indicator di‐8‐butyl‐amino‐naphthyl‐ethylene‐pyridinium‐propyl‐sulfonate (di‐8‐ANEPPS) to assess the action potential (AP) properties. We also examined AP‐induced Ca2+ transients using high‐speed confocal microscopy with rhod‐2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP‐induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles.
In Duchenne muscular dystrophy (DMD), muscle weakness and fragility are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. This study, using the murine model for DMD, supports the notion that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in action potential properties, calcium signals, and membrane biomechanics indicate changes in excitability, remodeling of the global calcium signal, and the likelihood of inappropriate contractile responses such as asynchronous sarcomere shortening.</description><subject>Action potential</subject><subject>animal model of muscular dystrophy</subject><subject>Ca2+ indicator</subject><subject>Ca2+ transients</subject><subject>Calcium signalling</subject><subject>Confocal microscopy</subject><subject>Cytoskeleton</subject><subject>Deformability</subject><subject>di‐8‐ANEPPS</subject><subject>Duchenne muscular dystrophy</subject><subject>Duchenne's muscular dystrophy</subject><subject>Dystrophin</subject><subject>elastimetry</subject><subject>Excitability</subject><subject>MDX</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Muscular dystrophy</subject><subject>myofiber branching</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Pyridinium</subject><subject>Rodents</subject><subject>Sarcolemma</subject><subject>sarcolemma biomechanics</subject><subject>Skeletal muscle</subject><subject>T‐tubule morphology</subject><subject>voltage‐sensitive dye</subject><issn>2051-817X</issn><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1qFTEYhoMotrRduZeAG0FOm5_Jz2wEqdYWCrpQ0FXIZJJzUjLJmMy0zM5L6DV6JcZz2lJduMpH8vDk5XsBeIHRMW4kbk7GzUKOMaGcPwH7BDG8klh8e_po3gNHpVwhhDCitEXNc7BHWIuEkGIf3Lz3Jc_j5FOEyUFtttOYJhsnrwPUsYdGB-PnARa_jjr4uIZjTqPNk7cF-ggHHVzKg-3hsCTnO5sLdDkNsF_KVMmNj79-3vbWeeOrFg7e2EPwzOlQ7NHdeQC-nn34cnq-uvz08eL03eXKNI3kK8b7TkjNWedo21AmhGWoI6hjpDVc0A5bLtoWWYopo0xzo2mPW60l1cTV6wPwducd564mNPX_rIMasx90XlTSXv39Ev1GrdO1apq6JIGr4PWdIKcfsy2TGnwxNgQdbZqLwlwwKRiisqKv_kGv0pzryooiqMbDsrKVerOjTE6lZOsewmCktp2qP52qbaeVfvk4_wN732AFyA648cEu_3Opz-ffyc76G8dhr-8</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Hernández‐Ochoa, Erick O.</creator><creator>Pratt, Stephen J. P.</creator><creator>Garcia‐Pelagio, Karla P.</creator><creator>Schneider, Martin F.</creator><creator>Lovering, Richard M.</creator><general>John Wiley & Sons, Inc</general><general>BlackWell Publishing Ltd</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin‐deficient mice</title><author>Hernández‐Ochoa, Erick O. ; Pratt, Stephen J. P. ; Garcia‐Pelagio, Karla P. ; Schneider, Martin F. ; Lovering, Richard M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4486-56db78a65bf3943577e50b20b529c673b1e67990e313535a6ca3d19aa83a2f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action potential</topic><topic>animal model of muscular dystrophy</topic><topic>Ca2+ indicator</topic><topic>Ca2+ transients</topic><topic>Calcium signalling</topic><topic>Confocal microscopy</topic><topic>Cytoskeleton</topic><topic>Deformability</topic><topic>di‐8‐ANEPPS</topic><topic>Duchenne muscular dystrophy</topic><topic>Duchenne's muscular dystrophy</topic><topic>Dystrophin</topic><topic>elastimetry</topic><topic>Excitability</topic><topic>MDX</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Muscular dystrophy</topic><topic>myofiber branching</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Pyridinium</topic><topic>Rodents</topic><topic>Sarcolemma</topic><topic>sarcolemma biomechanics</topic><topic>Skeletal muscle</topic><topic>T‐tubule morphology</topic><topic>voltage‐sensitive dye</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández‐Ochoa, Erick O.</creatorcontrib><creatorcontrib>Pratt, Stephen J. P.</creatorcontrib><creatorcontrib>Garcia‐Pelagio, Karla P.</creatorcontrib><creatorcontrib>Schneider, Martin F.</creatorcontrib><creatorcontrib>Lovering, Richard M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández‐Ochoa, Erick O.</au><au>Pratt, Stephen J. P.</au><au>Garcia‐Pelagio, Karla P.</au><au>Schneider, Martin F.</au><au>Lovering, Richard M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin‐deficient mice</atitle><jtitle>Physiological reports</jtitle><addtitle>Physiol Rep</addtitle><date>2015-04</date><risdate>2015</risdate><volume>3</volume><issue>4</issue><spage>e12366</spage><epage>n/a</epage><pages>e12366-n/a</pages><issn>2051-817X</issn><eissn>2051-817X</eissn><abstract>Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild‐type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high‐speed confocal microscopy and the voltage‐sensitive indicator di‐8‐butyl‐amino‐naphthyl‐ethylene‐pyridinium‐propyl‐sulfonate (di‐8‐ANEPPS) to assess the action potential (AP) properties. We also examined AP‐induced Ca2+ transients using high‐speed confocal microscopy with rhod‐2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP‐induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles.
In Duchenne muscular dystrophy (DMD), muscle weakness and fragility are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. This study, using the murine model for DMD, supports the notion that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in action potential properties, calcium signals, and membrane biomechanics indicate changes in excitability, remodeling of the global calcium signal, and the likelihood of inappropriate contractile responses such as asynchronous sarcomere shortening.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>25907787</pmid><doi>10.14814/phy2.12366</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-817X |
ispartof | Physiological reports, 2015-04, Vol.3 (4), p.e12366-n/a |
issn | 2051-817X 2051-817X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4425971 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action potential animal model of muscular dystrophy Ca2+ indicator Ca2+ transients Calcium signalling Confocal microscopy Cytoskeleton Deformability di‐8‐ANEPPS Duchenne muscular dystrophy Duchenne's muscular dystrophy Dystrophin elastimetry Excitability MDX Microscopy Morphology Muscular dystrophy myofiber branching Original Research Physiology Pyridinium Rodents Sarcolemma sarcolemma biomechanics Skeletal muscle T‐tubule morphology voltage‐sensitive dye |
title | Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin‐deficient mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20action%20potential%20and%20calcium%20signaling%20properties%20in%20malformed%20myofibers%20from%20dystrophin%E2%80%90deficient%20mice&rft.jtitle=Physiological%20reports&rft.au=Hern%C3%A1ndez%E2%80%90Ochoa,%20Erick%20O.&rft.date=2015-04&rft.volume=3&rft.issue=4&rft.spage=e12366&rft.epage=n/a&rft.pages=e12366-n/a&rft.issn=2051-817X&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.12366&rft_dat=%3Cproquest_pubme%3E1675875038%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035318675&rft_id=info:pmid/25907787&rfr_iscdi=true |