Development and validation of a predictive mortality risk score from a European hemodialysis cohort
Although mortality risk scores for chronic hemodialysis (HD) patients should have an important role in clinical decision-making, those currently available have limited applicability, robustness, and generalizability. Here we applied a modified Framingham Heart Study approach to derive 1- and 2-year...
Gespeichert in:
Veröffentlicht in: | Kidney international 2015-05, Vol.87 (5), p.996-1008 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although mortality risk scores for chronic hemodialysis (HD) patients should have an important role in clinical decision-making, those currently available have limited applicability, robustness, and generalizability. Here we applied a modified Framingham Heart Study approach to derive 1- and 2-year all-cause mortality risk scores using a 11,508 European incident HD patient database (AROii) recruited between 2007 and 2009. This scoring model was validated externally using similar-sized Dialysis Outcomes and Practice Patterns Survey (DOPPS) data. For AROii, the observed 1- and 2-year mortality rates were 13.0 (95% confidence interval (CI; 12.3–13.8)) and 11.2 (10.4–12.1)/100 patient years, respectively. Increasing age, low body mass index, history of cardiovascular disease or cancer, and use of a vascular access catheter during baseline were consistent predictors of mortality. Among baseline laboratory markers, hemoglobin, ferritin, C-reactive protein, serum albumin, and creatinine predicted death within 1 and 2 years. When applied to the DOPPS population, the predictive risk score models were highly discriminatory, and generalizability remained high when restricted by incidence/prevalence and geographic location (C-statistics 0.68–0.79). This new model offers improved predictive power over age/comorbidity-based models and also predicted early mortality (C-statistic 0.71). Our new model delivers a robust and reproducible mortality risk score, based on readily available clinical and laboratory data. |
---|---|
ISSN: | 0085-2538 1523-1755 |
DOI: | 10.1038/ki.2014.419 |