Integration of G Protein α (Gα) Signaling by the Regulator of G Protein Signaling 14 (RGS14)
RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-04, Vol.290 (14), p.9037-9049 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9049 |
---|---|
container_issue | 14 |
container_start_page | 9037 |
container_title | The Journal of biological chemistry |
container_volume | 290 |
creator | Brown, Nicole E. Goswami, Devrishi Branch, Mary Rose Ramineni, Suneela Ortlund, Eric A. Griffin, Patrick R. Hepler, John R. |
description | RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4−. Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4− and an AlF4−-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.
Background: RGS14 binds distinct forms of active and inactive Gα proteins through its RGS domain and GPR motif.
Results: Inactive Gαi1-GDP binding of the GPR motif does not preclude RGS action on active Gαo-GTP.
Conclusion: RGS14 simultaneously binds active Gαo and inactive Gαi1 while retaining GAP activity.
Significance: These findings clarify our understanding of how RGS14 integrates signaling by distinct G protein subunits. |
doi_str_mv | 10.1074/jbc.M114.634329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819819944</els_id><sourcerecordid>1671212973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-321034b158b97412936801bd05abe7ca6bf9e74fd1f234a38b56f87958ca2bf43</originalsourceid><addsrcrecordid>eNp1kb9uFDEQhy0EIkegpkMuL8VePLb3jxskFMERKQiUgESFZXtnN4721onti5THyovkmXB0IZCCaVzMN78Z-SPkLbAVsFYeXli3-gIgV42QgqtnZAGsE5Wo4edzsmCMQ6V43e2RVyldsFJSwUuyx-umFMgF-XU8ZxyjyT7MNAx0Tb_FkNHP9O6WLtd3twf0zI-zmfw8UntD8znSUxy3k8khPh34y4Gky9P1GciD1-TFYKaEbx7effLj08fvR5-rk6_r46MPJ5WTUuRKcGBCWqg7q1oJXImmY2B7VhuLrTONHRS2cuhh4EIa0dm6GbpW1Z0z3A5S7JP3u9zLrd1g73DO0Uz6MvqNiTc6GK-fdmZ_rsdwraXkolFQApYPATFcbTFlvfHJ4TSZGcM2aWha4OWwVhT0cIe6GFKKODyuAabvrehiRd9b0TsrZeLdv9c98n80FEDtACx_dO0x6uQ8zg57H9Fl3Qf_3_DfMjibVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671212973</pqid></control><display><type>article</type><title>Integration of G Protein α (Gα) Signaling by the Regulator of G Protein Signaling 14 (RGS14)</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Brown, Nicole E. ; Goswami, Devrishi ; Branch, Mary Rose ; Ramineni, Suneela ; Ortlund, Eric A. ; Griffin, Patrick R. ; Hepler, John R.</creator><creatorcontrib>Brown, Nicole E. ; Goswami, Devrishi ; Branch, Mary Rose ; Ramineni, Suneela ; Ortlund, Eric A. ; Griffin, Patrick R. ; Hepler, John R.</creatorcontrib><description>RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4−. Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4− and an AlF4−-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.
Background: RGS14 binds distinct forms of active and inactive Gα proteins through its RGS domain and GPR motif.
Results: Inactive Gαi1-GDP binding of the GPR motif does not preclude RGS action on active Gαo-GTP.
Conclusion: RGS14 simultaneously binds active Gαo and inactive Gαi1 while retaining GAP activity.
Significance: These findings clarify our understanding of how RGS14 integrates signaling by distinct G protein subunits.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.634329</identifier><identifier>PMID: 25666614</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Base Sequence ; CA2 Region, Hippocampal - cytology ; CA2 Region, Hippocampal - metabolism ; DNA Primers ; G Protein ; G Protein Regulatory (GPR) Motif ; GoLoco Motif ; GTP-Binding Protein alpha Subunits - metabolism ; GTPase ; GTPase-activating Protein (GAP) ; HeLa Cells ; Humans ; Neurons - metabolism ; Rats ; Regulator of G Protein Signaling (RGS) ; RGS Proteins - metabolism ; RGS14 ; Signal Transduction ; Synaptic Plasticity</subject><ispartof>The Journal of biological chemistry, 2015-04, Vol.290 (14), p.9037-9049</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-321034b158b97412936801bd05abe7ca6bf9e74fd1f234a38b56f87958ca2bf43</citedby><cites>FETCH-LOGICAL-c443t-321034b158b97412936801bd05abe7ca6bf9e74fd1f234a38b56f87958ca2bf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423691/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423691/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25666614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Nicole E.</creatorcontrib><creatorcontrib>Goswami, Devrishi</creatorcontrib><creatorcontrib>Branch, Mary Rose</creatorcontrib><creatorcontrib>Ramineni, Suneela</creatorcontrib><creatorcontrib>Ortlund, Eric A.</creatorcontrib><creatorcontrib>Griffin, Patrick R.</creatorcontrib><creatorcontrib>Hepler, John R.</creatorcontrib><title>Integration of G Protein α (Gα) Signaling by the Regulator of G Protein Signaling 14 (RGS14)</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4−. Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4− and an AlF4−-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.
Background: RGS14 binds distinct forms of active and inactive Gα proteins through its RGS domain and GPR motif.
Results: Inactive Gαi1-GDP binding of the GPR motif does not preclude RGS action on active Gαo-GTP.
Conclusion: RGS14 simultaneously binds active Gαo and inactive Gαi1 while retaining GAP activity.
Significance: These findings clarify our understanding of how RGS14 integrates signaling by distinct G protein subunits.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>CA2 Region, Hippocampal - cytology</subject><subject>CA2 Region, Hippocampal - metabolism</subject><subject>DNA Primers</subject><subject>G Protein</subject><subject>G Protein Regulatory (GPR) Motif</subject><subject>GoLoco Motif</subject><subject>GTP-Binding Protein alpha Subunits - metabolism</subject><subject>GTPase</subject><subject>GTPase-activating Protein (GAP)</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Neurons - metabolism</subject><subject>Rats</subject><subject>Regulator of G Protein Signaling (RGS)</subject><subject>RGS Proteins - metabolism</subject><subject>RGS14</subject><subject>Signal Transduction</subject><subject>Synaptic Plasticity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb9uFDEQhy0EIkegpkMuL8VePLb3jxskFMERKQiUgESFZXtnN4721onti5THyovkmXB0IZCCaVzMN78Z-SPkLbAVsFYeXli3-gIgV42QgqtnZAGsE5Wo4edzsmCMQ6V43e2RVyldsFJSwUuyx-umFMgF-XU8ZxyjyT7MNAx0Tb_FkNHP9O6WLtd3twf0zI-zmfw8UntD8znSUxy3k8khPh34y4Gky9P1GciD1-TFYKaEbx7effLj08fvR5-rk6_r46MPJ5WTUuRKcGBCWqg7q1oJXImmY2B7VhuLrTONHRS2cuhh4EIa0dm6GbpW1Z0z3A5S7JP3u9zLrd1g73DO0Uz6MvqNiTc6GK-fdmZ_rsdwraXkolFQApYPATFcbTFlvfHJ4TSZGcM2aWha4OWwVhT0cIe6GFKKODyuAabvrehiRd9b0TsrZeLdv9c98n80FEDtACx_dO0x6uQ8zg57H9Fl3Qf_3_DfMjibVA</recordid><startdate>20150403</startdate><enddate>20150403</enddate><creator>Brown, Nicole E.</creator><creator>Goswami, Devrishi</creator><creator>Branch, Mary Rose</creator><creator>Ramineni, Suneela</creator><creator>Ortlund, Eric A.</creator><creator>Griffin, Patrick R.</creator><creator>Hepler, John R.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150403</creationdate><title>Integration of G Protein α (Gα) Signaling by the Regulator of G Protein Signaling 14 (RGS14)</title><author>Brown, Nicole E. ; Goswami, Devrishi ; Branch, Mary Rose ; Ramineni, Suneela ; Ortlund, Eric A. ; Griffin, Patrick R. ; Hepler, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-321034b158b97412936801bd05abe7ca6bf9e74fd1f234a38b56f87958ca2bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>CA2 Region, Hippocampal - cytology</topic><topic>CA2 Region, Hippocampal - metabolism</topic><topic>DNA Primers</topic><topic>G Protein</topic><topic>G Protein Regulatory (GPR) Motif</topic><topic>GoLoco Motif</topic><topic>GTP-Binding Protein alpha Subunits - metabolism</topic><topic>GTPase</topic><topic>GTPase-activating Protein (GAP)</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Neurons - metabolism</topic><topic>Rats</topic><topic>Regulator of G Protein Signaling (RGS)</topic><topic>RGS Proteins - metabolism</topic><topic>RGS14</topic><topic>Signal Transduction</topic><topic>Synaptic Plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Nicole E.</creatorcontrib><creatorcontrib>Goswami, Devrishi</creatorcontrib><creatorcontrib>Branch, Mary Rose</creatorcontrib><creatorcontrib>Ramineni, Suneela</creatorcontrib><creatorcontrib>Ortlund, Eric A.</creatorcontrib><creatorcontrib>Griffin, Patrick R.</creatorcontrib><creatorcontrib>Hepler, John R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Nicole E.</au><au>Goswami, Devrishi</au><au>Branch, Mary Rose</au><au>Ramineni, Suneela</au><au>Ortlund, Eric A.</au><au>Griffin, Patrick R.</au><au>Hepler, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of G Protein α (Gα) Signaling by the Regulator of G Protein Signaling 14 (RGS14)</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-04-03</date><risdate>2015</risdate><volume>290</volume><issue>14</issue><spage>9037</spage><epage>9049</epage><pages>9037-9049</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4−. Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4− and an AlF4−-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.
Background: RGS14 binds distinct forms of active and inactive Gα proteins through its RGS domain and GPR motif.
Results: Inactive Gαi1-GDP binding of the GPR motif does not preclude RGS action on active Gαo-GTP.
Conclusion: RGS14 simultaneously binds active Gαo and inactive Gαi1 while retaining GAP activity.
Significance: These findings clarify our understanding of how RGS14 integrates signaling by distinct G protein subunits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25666614</pmid><doi>10.1074/jbc.M114.634329</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2015-04, Vol.290 (14), p.9037-9049 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423691 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Base Sequence CA2 Region, Hippocampal - cytology CA2 Region, Hippocampal - metabolism DNA Primers G Protein G Protein Regulatory (GPR) Motif GoLoco Motif GTP-Binding Protein alpha Subunits - metabolism GTPase GTPase-activating Protein (GAP) HeLa Cells Humans Neurons - metabolism Rats Regulator of G Protein Signaling (RGS) RGS Proteins - metabolism RGS14 Signal Transduction Synaptic Plasticity |
title | Integration of G Protein α (Gα) Signaling by the Regulator of G Protein Signaling 14 (RGS14) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20G%20Protein%20%CE%B1%20(G%CE%B1)%20Signaling%20by%20the%20Regulator%20of%20G%20Protein%20Signaling%2014%20(RGS14)&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Brown,%20Nicole%20E.&rft.date=2015-04-03&rft.volume=290&rft.issue=14&rft.spage=9037&rft.epage=9049&rft.pages=9037-9049&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.634329&rft_dat=%3Cproquest_pubme%3E1671212973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671212973&rft_id=info:pmid/25666614&rft_els_id=S0021925819819944&rfr_iscdi=true |