Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm
The effective population size [Formula: see text] is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating [Formula: see text] have been described, the most direct...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2015-05, Vol.200 (1), p.285-293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 1 |
container_start_page | 285 |
container_title | Genetics (Austin) |
container_volume | 200 |
creator | Hui, Tin-Yu J Burt, Austin |
description | The effective population size [Formula: see text] is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating [Formula: see text] have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator [Formula: see text] for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying [Formula: see text] is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator [Formula: see text], and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of [Formula: see text] to several million, hence allowing the estimation of larger [Formula: see text]. Finally, we demonstrate how this algorithm can cope with nonconstant [Formula: see text] scenarios and be used as a likelihood-ratio test to test for the equality of [Formula: see text] throughout the sampling horizon. An R package "NB" is now available for download to implement the method described in this article. |
doi_str_mv | 10.1534/genetics.115.174904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3694814971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-c824dd953e839eccff18fbf7fbc07b2edcb47e3ce544a68fb345183515311963</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwC5CQJTYsyGDHj8QbJFSVh1SJTfeW41zPuNhxsJ2h5dfj0bRVYcXKlu93j-49Pk3zmuAN4ZR92MIMxZm8IYRvSM8kZk-aUyIZbTtBydNH95PmRc7XGGMh-fC8Oel4z3rG5Wlzc5GLC7q4eYvAWjDF7QEtcVl9fYwzyu43IJtiQAXCEpP2_hblRRuYUNZh8ZDRL1d2SKM57sG_P8g442AuKOgbF9bQevcDvNvFOCHttzFVPLxsnlntM7y6O8-aq88XV-df28vvX76df7psDROitGbo2DRJTmGgEoyxlgx2tL0dDe7HDiYzsh6oAc6YFrVEGScD5dUhQqSgZ83Ho-yyjqHSday6glpSXTrdqqid-rsyu53axr1irKNUyCrw7k4gxZ8r5KKCywa81zPENSsiJOmqq4T-BzpgMggsSUXf_oNexzXN1YgDRfHQdfxA0SNlUsw5gX2Ym2B1yIC6z4CqGVDHDNSuN49Xfui5_3T6BzjLsxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683082251</pqid></control><display><type>article</type><title>Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hui, Tin-Yu J ; Burt, Austin</creator><creatorcontrib>Hui, Tin-Yu J ; Burt, Austin</creatorcontrib><description>The effective population size [Formula: see text] is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating [Formula: see text] have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator [Formula: see text] for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying [Formula: see text] is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator [Formula: see text], and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of [Formula: see text] to several million, hence allowing the estimation of larger [Formula: see text]. Finally, we demonstrate how this algorithm can cope with nonconstant [Formula: see text] scenarios and be used as a likelihood-ratio test to test for the equality of [Formula: see text] throughout the sampling horizon. An R package "NB" is now available for download to implement the method described in this article.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.115.174904</identifier><identifier>PMID: 25747459</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Algorithms ; Evolutionary biology ; Genes ; Genetics, Population - methods ; Investigations ; Likelihood Functions ; Models, Genetic ; Population - genetics ; Sample Size ; Time</subject><ispartof>Genetics (Austin), 2015-05, Vol.200 (1), p.285-293</ispartof><rights>Copyright © 2015 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America May 2015</rights><rights>Copyright © 2015 by the Genetics Society of America 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-c824dd953e839eccff18fbf7fbc07b2edcb47e3ce544a68fb345183515311963</citedby><cites>FETCH-LOGICAL-c466t-c824dd953e839eccff18fbf7fbc07b2edcb47e3ce544a68fb345183515311963</cites><orcidid>0000-0002-1702-803X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25747459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui, Tin-Yu J</creatorcontrib><creatorcontrib>Burt, Austin</creatorcontrib><title>Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The effective population size [Formula: see text] is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating [Formula: see text] have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator [Formula: see text] for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying [Formula: see text] is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator [Formula: see text], and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of [Formula: see text] to several million, hence allowing the estimation of larger [Formula: see text]. Finally, we demonstrate how this algorithm can cope with nonconstant [Formula: see text] scenarios and be used as a likelihood-ratio test to test for the equality of [Formula: see text] throughout the sampling horizon. An R package "NB" is now available for download to implement the method described in this article.</description><subject>Algorithms</subject><subject>Evolutionary biology</subject><subject>Genes</subject><subject>Genetics, Population - methods</subject><subject>Investigations</subject><subject>Likelihood Functions</subject><subject>Models, Genetic</subject><subject>Population - genetics</subject><subject>Sample Size</subject><subject>Time</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktv1DAUhSMEoqXwC5CQJTYsyGDHj8QbJFSVh1SJTfeW41zPuNhxsJ2h5dfj0bRVYcXKlu93j-49Pk3zmuAN4ZR92MIMxZm8IYRvSM8kZk-aUyIZbTtBydNH95PmRc7XGGMh-fC8Oel4z3rG5Wlzc5GLC7q4eYvAWjDF7QEtcVl9fYwzyu43IJtiQAXCEpP2_hblRRuYUNZh8ZDRL1d2SKM57sG_P8g442AuKOgbF9bQevcDvNvFOCHttzFVPLxsnlntM7y6O8-aq88XV-df28vvX76df7psDROitGbo2DRJTmGgEoyxlgx2tL0dDe7HDiYzsh6oAc6YFrVEGScD5dUhQqSgZ83Ho-yyjqHSday6glpSXTrdqqid-rsyu53axr1irKNUyCrw7k4gxZ8r5KKCywa81zPENSsiJOmqq4T-BzpgMggsSUXf_oNexzXN1YgDRfHQdfxA0SNlUsw5gX2Ym2B1yIC6z4CqGVDHDNSuN49Xfui5_3T6BzjLsxY</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Hui, Tin-Yu J</creator><creator>Burt, Austin</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1702-803X</orcidid></search><sort><creationdate>20150501</creationdate><title>Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm</title><author>Hui, Tin-Yu J ; Burt, Austin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-c824dd953e839eccff18fbf7fbc07b2edcb47e3ce544a68fb345183515311963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Evolutionary biology</topic><topic>Genes</topic><topic>Genetics, Population - methods</topic><topic>Investigations</topic><topic>Likelihood Functions</topic><topic>Models, Genetic</topic><topic>Population - genetics</topic><topic>Sample Size</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Tin-Yu J</creatorcontrib><creatorcontrib>Burt, Austin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Tin-Yu J</au><au>Burt, Austin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>200</volume><issue>1</issue><spage>285</spage><epage>293</epage><pages>285-293</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The effective population size [Formula: see text] is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating [Formula: see text] have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator [Formula: see text] for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying [Formula: see text] is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator [Formula: see text], and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of [Formula: see text] to several million, hence allowing the estimation of larger [Formula: see text]. Finally, we demonstrate how this algorithm can cope with nonconstant [Formula: see text] scenarios and be used as a likelihood-ratio test to test for the equality of [Formula: see text] throughout the sampling horizon. An R package "NB" is now available for download to implement the method described in this article.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>25747459</pmid><doi>10.1534/genetics.115.174904</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1702-803X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2015-05, Vol.200 (1), p.285-293 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423369 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Evolutionary biology Genes Genetics, Population - methods Investigations Likelihood Functions Models, Genetic Population - genetics Sample Size Time |
title | Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20effective%20population%20size%20from%20temporally%20spaced%20samples%20with%20a%20novel,%20efficient%20maximum-likelihood%20algorithm&rft.jtitle=Genetics%20(Austin)&rft.au=Hui,%20Tin-Yu%20J&rft.date=2015-05-01&rft.volume=200&rft.issue=1&rft.spage=285&rft.epage=293&rft.pages=285-293&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.115.174904&rft_dat=%3Cproquest_pubme%3E3694814971%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683082251&rft_id=info:pmid/25747459&rfr_iscdi=true |