MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis

MicroRNAs have emerged as crucial regulators of cardiac homeostasis and remodeling in various cardiovascular diseases. We previously demonstrated that miR-221 regulated cardiac hypertrophy in vitro . In the present study, we demonstrated that the cardiac-specific overexpression of miR-221 in mice ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2015-06, Vol.22 (6), p.986-999
Hauptverfasser: Su, M, Wang, J, Wang, C, Wang, X, Dong, W, Qiu, W, Wang, Y, Zhao, X, Zou, Y, Song, L, Zhang, L, Hui, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 999
container_issue 6
container_start_page 986
container_title Cell death and differentiation
container_volume 22
creator Su, M
Wang, J
Wang, C
Wang, X
Dong, W
Qiu, W
Wang, Y
Zhao, X
Zou, Y
Song, L
Zhang, L
Hui, R
description MicroRNAs have emerged as crucial regulators of cardiac homeostasis and remodeling in various cardiovascular diseases. We previously demonstrated that miR-221 regulated cardiac hypertrophy in vitro . In the present study, we demonstrated that the cardiac-specific overexpression of miR-221 in mice evoked cardiac dysfunction and heart failure. The lipidated form of microtubule-associated protein 1 light chain 3 was significantly decreased and sequestosome 1 was accumulated in cardiac tissues of transgenic (TG) mice, indicating that autophagy was impaired. Overexpression of miR-221 in vitro reduced autophagic flux through inhibiting autophagic vesicle formation. Furthermore, mammalian target of rapamycin (mTOR) was activated by miR-221, both in vivo and in vitro . The inactivation of mTOR abolished the miR-221-induced inhibition of autophagy and cardiac remodeling. Our previous study has demonstrated that cyclin-dependent kinase (CDK) inhibitor p27 was a direct target of miR-221 in cardiomyocytes. Consistently, the expression of p27 was markedly suppressed in the myocardia of TG mice. Knockdown of p27 by siRNAs was sufficient to mimic the effects of miR-221 overexpression on mTOR activation and autophagy inhibition, whereas overexpression of p27 rescued miR-221-induced autophagic flux impairment. Inhibition of CDK2 restored the impaired autophagic flux and rescued the cardiac remodeling induced by either p27 knockdown or miR-221 overexpression. These findings reveal that miR-221 is an important regulator of autophagy balance and cardiac remodeling by modulating the p27/CDK2/mTOR axis, and implicate miR-221 as a therapeutic target in heart failure.
doi_str_mv 10.1038/cdd.2014.187
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3674287441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c614t-f7a5ce5dd787b1b81d0538798c0878c8bde6e62773f881dacaf09bcdf8e7b46a3</originalsourceid><addsrcrecordid>eNp9kUtr3DAURk1paB7trusi6KaLeEaS9bjeFMI0fZC0gZCuhSzJYwXbciW7ZP59FSYNaSld6cJ3-K4upyheE7wiuIK1sXZFMWErAvJZcUSYFCVnuHqe54rjssZMHhbHKd1ijIWsxYvikPKqZgzgqFBfvYnh-ttZSSlBfux84-eE9DKHqdPbHdKjRVMMQ5hdQp3TcUat9v0SHWp2aAh26fXsxy2aO4cmKtebDxd0PdxcXSN959PL4qDVfXKvHt6T4vvH85vN5_Ly6tOXzdllaQRhc9lKzY3j1kqQDWmAWMwrkDUYDBIMNNYJJ6iUVQs51Ea3uG6MbcHJhgldnRTv973T0gzOGjfOUfdqin7QcaeC9urPZPSd2oafijFaEaC54N1DQQw_FpdmNfhkXN_r0YUlKSIAE8kFZxl9-xd6G5Y45vMU5SAZUJDV_ygiJHBJCcaZOt1T2UJK0bWPXyZY3ftV2a-696uy34y_eXrmI_xbaAbKPZByNG5dfLL1X4W_ACROrrY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678572100</pqid></control><display><type>article</type><title>MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Su, M ; Wang, J ; Wang, C ; Wang, X ; Dong, W ; Qiu, W ; Wang, Y ; Zhao, X ; Zou, Y ; Song, L ; Zhang, L ; Hui, R</creator><creatorcontrib>Su, M ; Wang, J ; Wang, C ; Wang, X ; Dong, W ; Qiu, W ; Wang, Y ; Zhao, X ; Zou, Y ; Song, L ; Zhang, L ; Hui, R</creatorcontrib><description>MicroRNAs have emerged as crucial regulators of cardiac homeostasis and remodeling in various cardiovascular diseases. We previously demonstrated that miR-221 regulated cardiac hypertrophy in vitro . In the present study, we demonstrated that the cardiac-specific overexpression of miR-221 in mice evoked cardiac dysfunction and heart failure. The lipidated form of microtubule-associated protein 1 light chain 3 was significantly decreased and sequestosome 1 was accumulated in cardiac tissues of transgenic (TG) mice, indicating that autophagy was impaired. Overexpression of miR-221 in vitro reduced autophagic flux through inhibiting autophagic vesicle formation. Furthermore, mammalian target of rapamycin (mTOR) was activated by miR-221, both in vivo and in vitro . The inactivation of mTOR abolished the miR-221-induced inhibition of autophagy and cardiac remodeling. Our previous study has demonstrated that cyclin-dependent kinase (CDK) inhibitor p27 was a direct target of miR-221 in cardiomyocytes. Consistently, the expression of p27 was markedly suppressed in the myocardia of TG mice. Knockdown of p27 by siRNAs was sufficient to mimic the effects of miR-221 overexpression on mTOR activation and autophagy inhibition, whereas overexpression of p27 rescued miR-221-induced autophagic flux impairment. Inhibition of CDK2 restored the impaired autophagic flux and rescued the cardiac remodeling induced by either p27 knockdown or miR-221 overexpression. These findings reveal that miR-221 is an important regulator of autophagy balance and cardiac remodeling by modulating the p27/CDK2/mTOR axis, and implicate miR-221 as a therapeutic target in heart failure.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2014.187</identifier><identifier>PMID: 25394488</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/2 ; 13/95 ; 14/19 ; 14/28 ; 38/77 ; 38/89 ; 42/44 ; 59 ; 631/80/39/2346 ; 64/60 ; 96/63 ; Animals ; Apoptosis ; Apoptosis - genetics ; Apoptosis - physiology ; Autophagy ; Autophagy - genetics ; Autophagy - physiology ; Biochemistry ; Biomedical and Life Sciences ; Blotting, Western ; Cardiomyocytes ; Cardiovascular diseases ; Cell Biology ; Cell Cycle Analysis ; Cells, Cultured ; Congestive heart failure ; Cyclin-dependent kinase 2 ; Cyclin-dependent kinase inhibitor p27 ; Cyclin-dependent kinases ; Echocardiography ; Enzyme inhibitors ; Heart failure ; Heart Failure - genetics ; Heart Failure - metabolism ; Homeostasis ; Hypertrophy ; Kinases ; Life Sciences ; Male ; Mice ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Microscopy, Electron, Transmission ; Microtubule-associated protein 1 ; miRNA ; Myocardium - metabolism ; Original Paper ; Phagocytosis ; Proliferating Cell Nuclear Antigen - genetics ; Proliferating Cell Nuclear Antigen - metabolism ; Rapamycin ; Rats ; siRNA ; Stem Cells ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transgenic mice</subject><ispartof>Cell death and differentiation, 2015-06, Vol.22 (6), p.986-999</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><rights>Copyright © 2015 Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c614t-f7a5ce5dd787b1b81d0538798c0878c8bde6e62773f881dacaf09bcdf8e7b46a3</citedby><cites>FETCH-LOGICAL-c614t-f7a5ce5dd787b1b81d0538798c0878c8bde6e62773f881dacaf09bcdf8e7b46a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423182/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423182/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25394488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, M</creatorcontrib><creatorcontrib>Wang, J</creatorcontrib><creatorcontrib>Wang, C</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Dong, W</creatorcontrib><creatorcontrib>Qiu, W</creatorcontrib><creatorcontrib>Wang, Y</creatorcontrib><creatorcontrib>Zhao, X</creatorcontrib><creatorcontrib>Zou, Y</creatorcontrib><creatorcontrib>Song, L</creatorcontrib><creatorcontrib>Zhang, L</creatorcontrib><creatorcontrib>Hui, R</creatorcontrib><title>MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>MicroRNAs have emerged as crucial regulators of cardiac homeostasis and remodeling in various cardiovascular diseases. We previously demonstrated that miR-221 regulated cardiac hypertrophy in vitro . In the present study, we demonstrated that the cardiac-specific overexpression of miR-221 in mice evoked cardiac dysfunction and heart failure. The lipidated form of microtubule-associated protein 1 light chain 3 was significantly decreased and sequestosome 1 was accumulated in cardiac tissues of transgenic (TG) mice, indicating that autophagy was impaired. Overexpression of miR-221 in vitro reduced autophagic flux through inhibiting autophagic vesicle formation. Furthermore, mammalian target of rapamycin (mTOR) was activated by miR-221, both in vivo and in vitro . The inactivation of mTOR abolished the miR-221-induced inhibition of autophagy and cardiac remodeling. Our previous study has demonstrated that cyclin-dependent kinase (CDK) inhibitor p27 was a direct target of miR-221 in cardiomyocytes. Consistently, the expression of p27 was markedly suppressed in the myocardia of TG mice. Knockdown of p27 by siRNAs was sufficient to mimic the effects of miR-221 overexpression on mTOR activation and autophagy inhibition, whereas overexpression of p27 rescued miR-221-induced autophagic flux impairment. Inhibition of CDK2 restored the impaired autophagic flux and rescued the cardiac remodeling induced by either p27 knockdown or miR-221 overexpression. These findings reveal that miR-221 is an important regulator of autophagy balance and cardiac remodeling by modulating the p27/CDK2/mTOR axis, and implicate miR-221 as a therapeutic target in heart failure.</description><subject>13/109</subject><subject>13/2</subject><subject>13/95</subject><subject>14/19</subject><subject>14/28</subject><subject>38/77</subject><subject>38/89</subject><subject>42/44</subject><subject>59</subject><subject>631/80/39/2346</subject><subject>64/60</subject><subject>96/63</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - physiology</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Autophagy - physiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Blotting, Western</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cells, Cultured</subject><subject>Congestive heart failure</subject><subject>Cyclin-dependent kinase 2</subject><subject>Cyclin-dependent kinase inhibitor p27</subject><subject>Cyclin-dependent kinases</subject><subject>Echocardiography</subject><subject>Enzyme inhibitors</subject><subject>Heart failure</subject><subject>Heart Failure - genetics</subject><subject>Heart Failure - metabolism</subject><subject>Homeostasis</subject><subject>Hypertrophy</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microtubule-associated protein 1</subject><subject>miRNA</subject><subject>Myocardium - metabolism</subject><subject>Original Paper</subject><subject>Phagocytosis</subject><subject>Proliferating Cell Nuclear Antigen - genetics</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Rapamycin</subject><subject>Rats</subject><subject>siRNA</subject><subject>Stem Cells</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transgenic mice</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtr3DAURk1paB7trusi6KaLeEaS9bjeFMI0fZC0gZCuhSzJYwXbciW7ZP59FSYNaSld6cJ3-K4upyheE7wiuIK1sXZFMWErAvJZcUSYFCVnuHqe54rjssZMHhbHKd1ijIWsxYvikPKqZgzgqFBfvYnh-ttZSSlBfux84-eE9DKHqdPbHdKjRVMMQ5hdQp3TcUat9v0SHWp2aAh26fXsxy2aO4cmKtebDxd0PdxcXSN959PL4qDVfXKvHt6T4vvH85vN5_Ly6tOXzdllaQRhc9lKzY3j1kqQDWmAWMwrkDUYDBIMNNYJJ6iUVQs51Ea3uG6MbcHJhgldnRTv973T0gzOGjfOUfdqin7QcaeC9urPZPSd2oafijFaEaC54N1DQQw_FpdmNfhkXN_r0YUlKSIAE8kFZxl9-xd6G5Y45vMU5SAZUJDV_ygiJHBJCcaZOt1T2UJK0bWPXyZY3ftV2a-696uy34y_eXrmI_xbaAbKPZByNG5dfLL1X4W_ACROrrY</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Su, M</creator><creator>Wang, J</creator><creator>Wang, C</creator><creator>Wang, X</creator><creator>Dong, W</creator><creator>Qiu, W</creator><creator>Wang, Y</creator><creator>Zhao, X</creator><creator>Zou, Y</creator><creator>Song, L</creator><creator>Zhang, L</creator><creator>Hui, R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150601</creationdate><title>MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis</title><author>Su, M ; Wang, J ; Wang, C ; Wang, X ; Dong, W ; Qiu, W ; Wang, Y ; Zhao, X ; Zou, Y ; Song, L ; Zhang, L ; Hui, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c614t-f7a5ce5dd787b1b81d0538798c0878c8bde6e62773f881dacaf09bcdf8e7b46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/109</topic><topic>13/2</topic><topic>13/95</topic><topic>14/19</topic><topic>14/28</topic><topic>38/77</topic><topic>38/89</topic><topic>42/44</topic><topic>59</topic><topic>631/80/39/2346</topic><topic>64/60</topic><topic>96/63</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - physiology</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Autophagy - physiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Blotting, Western</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cells, Cultured</topic><topic>Congestive heart failure</topic><topic>Cyclin-dependent kinase 2</topic><topic>Cyclin-dependent kinase inhibitor p27</topic><topic>Cyclin-dependent kinases</topic><topic>Echocardiography</topic><topic>Enzyme inhibitors</topic><topic>Heart failure</topic><topic>Heart Failure - genetics</topic><topic>Heart Failure - metabolism</topic><topic>Homeostasis</topic><topic>Hypertrophy</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microtubule-associated protein 1</topic><topic>miRNA</topic><topic>Myocardium - metabolism</topic><topic>Original Paper</topic><topic>Phagocytosis</topic><topic>Proliferating Cell Nuclear Antigen - genetics</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Rapamycin</topic><topic>Rats</topic><topic>siRNA</topic><topic>Stem Cells</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, M</creatorcontrib><creatorcontrib>Wang, J</creatorcontrib><creatorcontrib>Wang, C</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Dong, W</creatorcontrib><creatorcontrib>Qiu, W</creatorcontrib><creatorcontrib>Wang, Y</creatorcontrib><creatorcontrib>Zhao, X</creatorcontrib><creatorcontrib>Zou, Y</creatorcontrib><creatorcontrib>Song, L</creatorcontrib><creatorcontrib>Zhang, L</creatorcontrib><creatorcontrib>Hui, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, M</au><au>Wang, J</au><au>Wang, C</au><au>Wang, X</au><au>Dong, W</au><au>Qiu, W</au><au>Wang, Y</au><au>Zhao, X</au><au>Zou, Y</au><au>Song, L</au><au>Zhang, L</au><au>Hui, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>22</volume><issue>6</issue><spage>986</spage><epage>999</epage><pages>986-999</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>MicroRNAs have emerged as crucial regulators of cardiac homeostasis and remodeling in various cardiovascular diseases. We previously demonstrated that miR-221 regulated cardiac hypertrophy in vitro . In the present study, we demonstrated that the cardiac-specific overexpression of miR-221 in mice evoked cardiac dysfunction and heart failure. The lipidated form of microtubule-associated protein 1 light chain 3 was significantly decreased and sequestosome 1 was accumulated in cardiac tissues of transgenic (TG) mice, indicating that autophagy was impaired. Overexpression of miR-221 in vitro reduced autophagic flux through inhibiting autophagic vesicle formation. Furthermore, mammalian target of rapamycin (mTOR) was activated by miR-221, both in vivo and in vitro . The inactivation of mTOR abolished the miR-221-induced inhibition of autophagy and cardiac remodeling. Our previous study has demonstrated that cyclin-dependent kinase (CDK) inhibitor p27 was a direct target of miR-221 in cardiomyocytes. Consistently, the expression of p27 was markedly suppressed in the myocardia of TG mice. Knockdown of p27 by siRNAs was sufficient to mimic the effects of miR-221 overexpression on mTOR activation and autophagy inhibition, whereas overexpression of p27 rescued miR-221-induced autophagic flux impairment. Inhibition of CDK2 restored the impaired autophagic flux and rescued the cardiac remodeling induced by either p27 knockdown or miR-221 overexpression. These findings reveal that miR-221 is an important regulator of autophagy balance and cardiac remodeling by modulating the p27/CDK2/mTOR axis, and implicate miR-221 as a therapeutic target in heart failure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25394488</pmid><doi>10.1038/cdd.2014.187</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2015-06, Vol.22 (6), p.986-999
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423182
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 13/109
13/2
13/95
14/19
14/28
38/77
38/89
42/44
59
631/80/39/2346
64/60
96/63
Animals
Apoptosis
Apoptosis - genetics
Apoptosis - physiology
Autophagy
Autophagy - genetics
Autophagy - physiology
Biochemistry
Biomedical and Life Sciences
Blotting, Western
Cardiomyocytes
Cardiovascular diseases
Cell Biology
Cell Cycle Analysis
Cells, Cultured
Congestive heart failure
Cyclin-dependent kinase 2
Cyclin-dependent kinase inhibitor p27
Cyclin-dependent kinases
Echocardiography
Enzyme inhibitors
Heart failure
Heart Failure - genetics
Heart Failure - metabolism
Homeostasis
Hypertrophy
Kinases
Life Sciences
Male
Mice
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
Microscopy, Electron, Transmission
Microtubule-associated protein 1
miRNA
Myocardium - metabolism
Original Paper
Phagocytosis
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Rapamycin
Rats
siRNA
Stem Cells
TOR protein
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Transgenic mice
title MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-221%20inhibits%20autophagy%20and%20promotes%20heart%20failure%20by%20modulating%20the%20p27/CDK2/mTOR%20axis&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Su,%20M&rft.date=2015-06-01&rft.volume=22&rft.issue=6&rft.spage=986&rft.epage=999&rft.pages=986-999&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2014.187&rft_dat=%3Cproquest_pubme%3E3674287441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1678572100&rft_id=info:pmid/25394488&rfr_iscdi=true