Loss of the RNA polymerase III repressor MAF1 confers obesity resistance

MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2015-05, Vol.29 (9), p.934-947
Hauptverfasser: Bonhoure, Nicolas, Byrnes, Ashlee, Moir, Robyn D, Hodroj, Wassim, Preitner, Frédéric, Praz, Viviane, Marcelin, Genevieve, Chua, Jr, Streamson C, Martinez-Lopez, Nuria, Singh, Rajat, Moullan, Norman, Auwerx, Johan, Willemin, Gilles, Shah, Hardik, Hartil, Kirsten, Vaitheesvaran, Bhavapriya, Kurland, Irwin, Hernandez, Nouria, Willis, Ian M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 9
container_start_page 934
container_title Genes & development
container_volume 29
creator Bonhoure, Nicolas
Byrnes, Ashlee
Moir, Robyn D
Hodroj, Wassim
Preitner, Frédéric
Praz, Viviane
Marcelin, Genevieve
Chua, Jr, Streamson C
Martinez-Lopez, Nuria
Singh, Rajat
Moullan, Norman
Auwerx, Johan
Willemin, Gilles
Shah, Hardik
Hartil, Kirsten
Vaitheesvaran, Bhavapriya
Kurland, Irwin
Hernandez, Nouria
Willis, Ian M
description MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
doi_str_mv 10.1101/gad.258350.115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4421982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677885927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-ed2959579786311953b50449e05d9891e233bf1597ceb634d32b204c19dc9f483</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRtH5cPUqOXlL3M9m5CKWoLVQF0fOSbCZtJM3W3VTof-9Ka9GTp-Exv3nMzCPkktEhY5TdzItqyJUW6lurAzJgSkKqZJ4fkgHVQFMQGZyQ0xDeKaUZzbJjcsIVCKmoGpDJzIWQuDrpF5i8PI2SlWs3S_RFwGQ6nSYeVx5DcD55HN2zxLquRh8HSgxNv4nt0IS-6Cyek6O6aANe7OoZebu_ex1P0tnzw3Q8mqVWauhTrDgoUDnkOhOMgRKlolICUlWBBoZciLJmCnKLZSZkJXjJqbQMKgu11OKM3G59V-tyiZXFrvdFa1a-WRZ-Y1zRmL-drlmYufs0UnIGmkeD652Bdx9rDL1ZNsFi2xYdunUwTPNc67il_h_N8ogq4HlEh1vU-vhQj_V-I0bNd1ImJmW2SUWt4sDV7zv2-E804gvQKo2E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677885927</pqid></control><display><type>article</type><title>Loss of the RNA polymerase III repressor MAF1 confers obesity resistance</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Bonhoure, Nicolas ; Byrnes, Ashlee ; Moir, Robyn D ; Hodroj, Wassim ; Preitner, Frédéric ; Praz, Viviane ; Marcelin, Genevieve ; Chua, Jr, Streamson C ; Martinez-Lopez, Nuria ; Singh, Rajat ; Moullan, Norman ; Auwerx, Johan ; Willemin, Gilles ; Shah, Hardik ; Hartil, Kirsten ; Vaitheesvaran, Bhavapriya ; Kurland, Irwin ; Hernandez, Nouria ; Willis, Ian M</creator><creatorcontrib>Bonhoure, Nicolas ; Byrnes, Ashlee ; Moir, Robyn D ; Hodroj, Wassim ; Preitner, Frédéric ; Praz, Viviane ; Marcelin, Genevieve ; Chua, Jr, Streamson C ; Martinez-Lopez, Nuria ; Singh, Rajat ; Moullan, Norman ; Auwerx, Johan ; Willemin, Gilles ; Shah, Hardik ; Hartil, Kirsten ; Vaitheesvaran, Bhavapriya ; Kurland, Irwin ; Hernandez, Nouria ; Willis, Ian M</creatorcontrib><description>MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.258350.115</identifier><identifier>PMID: 25934505</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Autophagy - genetics ; Eating - genetics ; Energy Metabolism - genetics ; Lipid Metabolism - genetics ; Longevity - genetics ; Mice, Inbred C57BL ; Mice, Knockout ; Non-alcoholic Fatty Liver Disease - genetics ; Obesity - genetics ; Repressor Proteins - genetics ; Research Paper ; RNA, Transfer - metabolism ; Spermidine - metabolism</subject><ispartof>Genes &amp; development, 2015-05, Vol.29 (9), p.934-947</ispartof><rights>2015 Bonhoure et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-ed2959579786311953b50449e05d9891e233bf1597ceb634d32b204c19dc9f483</citedby><cites>FETCH-LOGICAL-c489t-ed2959579786311953b50449e05d9891e233bf1597ceb634d32b204c19dc9f483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421982/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421982/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25934505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonhoure, Nicolas</creatorcontrib><creatorcontrib>Byrnes, Ashlee</creatorcontrib><creatorcontrib>Moir, Robyn D</creatorcontrib><creatorcontrib>Hodroj, Wassim</creatorcontrib><creatorcontrib>Preitner, Frédéric</creatorcontrib><creatorcontrib>Praz, Viviane</creatorcontrib><creatorcontrib>Marcelin, Genevieve</creatorcontrib><creatorcontrib>Chua, Jr, Streamson C</creatorcontrib><creatorcontrib>Martinez-Lopez, Nuria</creatorcontrib><creatorcontrib>Singh, Rajat</creatorcontrib><creatorcontrib>Moullan, Norman</creatorcontrib><creatorcontrib>Auwerx, Johan</creatorcontrib><creatorcontrib>Willemin, Gilles</creatorcontrib><creatorcontrib>Shah, Hardik</creatorcontrib><creatorcontrib>Hartil, Kirsten</creatorcontrib><creatorcontrib>Vaitheesvaran, Bhavapriya</creatorcontrib><creatorcontrib>Kurland, Irwin</creatorcontrib><creatorcontrib>Hernandez, Nouria</creatorcontrib><creatorcontrib>Willis, Ian M</creatorcontrib><title>Loss of the RNA polymerase III repressor MAF1 confers obesity resistance</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.</description><subject>Animals</subject><subject>Autophagy - genetics</subject><subject>Eating - genetics</subject><subject>Energy Metabolism - genetics</subject><subject>Lipid Metabolism - genetics</subject><subject>Longevity - genetics</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>Obesity - genetics</subject><subject>Repressor Proteins - genetics</subject><subject>Research Paper</subject><subject>RNA, Transfer - metabolism</subject><subject>Spermidine - metabolism</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1Lw0AQxRdRtH5cPUqOXlL3M9m5CKWoLVQF0fOSbCZtJM3W3VTof-9Ka9GTp-Exv3nMzCPkktEhY5TdzItqyJUW6lurAzJgSkKqZJ4fkgHVQFMQGZyQ0xDeKaUZzbJjcsIVCKmoGpDJzIWQuDrpF5i8PI2SlWs3S_RFwGQ6nSYeVx5DcD55HN2zxLquRh8HSgxNv4nt0IS-6Cyek6O6aANe7OoZebu_ex1P0tnzw3Q8mqVWauhTrDgoUDnkOhOMgRKlolICUlWBBoZciLJmCnKLZSZkJXjJqbQMKgu11OKM3G59V-tyiZXFrvdFa1a-WRZ-Y1zRmL-drlmYufs0UnIGmkeD652Bdx9rDL1ZNsFi2xYdunUwTPNc67il_h_N8ogq4HlEh1vU-vhQj_V-I0bNd1ImJmW2SUWt4sDV7zv2-E804gvQKo2E</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Bonhoure, Nicolas</creator><creator>Byrnes, Ashlee</creator><creator>Moir, Robyn D</creator><creator>Hodroj, Wassim</creator><creator>Preitner, Frédéric</creator><creator>Praz, Viviane</creator><creator>Marcelin, Genevieve</creator><creator>Chua, Jr, Streamson C</creator><creator>Martinez-Lopez, Nuria</creator><creator>Singh, Rajat</creator><creator>Moullan, Norman</creator><creator>Auwerx, Johan</creator><creator>Willemin, Gilles</creator><creator>Shah, Hardik</creator><creator>Hartil, Kirsten</creator><creator>Vaitheesvaran, Bhavapriya</creator><creator>Kurland, Irwin</creator><creator>Hernandez, Nouria</creator><creator>Willis, Ian M</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Loss of the RNA polymerase III repressor MAF1 confers obesity resistance</title><author>Bonhoure, Nicolas ; Byrnes, Ashlee ; Moir, Robyn D ; Hodroj, Wassim ; Preitner, Frédéric ; Praz, Viviane ; Marcelin, Genevieve ; Chua, Jr, Streamson C ; Martinez-Lopez, Nuria ; Singh, Rajat ; Moullan, Norman ; Auwerx, Johan ; Willemin, Gilles ; Shah, Hardik ; Hartil, Kirsten ; Vaitheesvaran, Bhavapriya ; Kurland, Irwin ; Hernandez, Nouria ; Willis, Ian M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-ed2959579786311953b50449e05d9891e233bf1597ceb634d32b204c19dc9f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Autophagy - genetics</topic><topic>Eating - genetics</topic><topic>Energy Metabolism - genetics</topic><topic>Lipid Metabolism - genetics</topic><topic>Longevity - genetics</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>Obesity - genetics</topic><topic>Repressor Proteins - genetics</topic><topic>Research Paper</topic><topic>RNA, Transfer - metabolism</topic><topic>Spermidine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonhoure, Nicolas</creatorcontrib><creatorcontrib>Byrnes, Ashlee</creatorcontrib><creatorcontrib>Moir, Robyn D</creatorcontrib><creatorcontrib>Hodroj, Wassim</creatorcontrib><creatorcontrib>Preitner, Frédéric</creatorcontrib><creatorcontrib>Praz, Viviane</creatorcontrib><creatorcontrib>Marcelin, Genevieve</creatorcontrib><creatorcontrib>Chua, Jr, Streamson C</creatorcontrib><creatorcontrib>Martinez-Lopez, Nuria</creatorcontrib><creatorcontrib>Singh, Rajat</creatorcontrib><creatorcontrib>Moullan, Norman</creatorcontrib><creatorcontrib>Auwerx, Johan</creatorcontrib><creatorcontrib>Willemin, Gilles</creatorcontrib><creatorcontrib>Shah, Hardik</creatorcontrib><creatorcontrib>Hartil, Kirsten</creatorcontrib><creatorcontrib>Vaitheesvaran, Bhavapriya</creatorcontrib><creatorcontrib>Kurland, Irwin</creatorcontrib><creatorcontrib>Hernandez, Nouria</creatorcontrib><creatorcontrib>Willis, Ian M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonhoure, Nicolas</au><au>Byrnes, Ashlee</au><au>Moir, Robyn D</au><au>Hodroj, Wassim</au><au>Preitner, Frédéric</au><au>Praz, Viviane</au><au>Marcelin, Genevieve</au><au>Chua, Jr, Streamson C</au><au>Martinez-Lopez, Nuria</au><au>Singh, Rajat</au><au>Moullan, Norman</au><au>Auwerx, Johan</au><au>Willemin, Gilles</au><au>Shah, Hardik</au><au>Hartil, Kirsten</au><au>Vaitheesvaran, Bhavapriya</au><au>Kurland, Irwin</au><au>Hernandez, Nouria</au><au>Willis, Ian M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of the RNA polymerase III repressor MAF1 confers obesity resistance</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>29</volume><issue>9</issue><spage>934</spage><epage>947</epage><pages>934-947</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25934505</pmid><doi>10.1101/gad.258350.115</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2015-05, Vol.29 (9), p.934-947
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4421982
source MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Animals
Autophagy - genetics
Eating - genetics
Energy Metabolism - genetics
Lipid Metabolism - genetics
Longevity - genetics
Mice, Inbred C57BL
Mice, Knockout
Non-alcoholic Fatty Liver Disease - genetics
Obesity - genetics
Repressor Proteins - genetics
Research Paper
RNA, Transfer - metabolism
Spermidine - metabolism
title Loss of the RNA polymerase III repressor MAF1 confers obesity resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20the%20RNA%20polymerase%20III%20repressor%20MAF1%20confers%20obesity%20resistance&rft.jtitle=Genes%20&%20development&rft.au=Bonhoure,%20Nicolas&rft.date=2015-05-01&rft.volume=29&rft.issue=9&rft.spage=934&rft.epage=947&rft.pages=934-947&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.258350.115&rft_dat=%3Cproquest_pubme%3E1677885927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677885927&rft_id=info:pmid/25934505&rfr_iscdi=true