Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes
Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffracti...
Gespeichert in:
Veröffentlicht in: | ChemistryOpen (Weinheim) 2015-04, Vol.4 (2), p.115-119 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 2 |
container_start_page | 115 |
container_title | ChemistryOpen (Weinheim) |
container_volume | 4 |
creator | Cunha, Eunice Proença, Maria Fernanda Costa, Florinda Fernandes, António J. Ferro, Marta A. C. Lopes, Paulo E. González-Debs, Mariam Melle-Franco, Manuel Deepak, Francis Leonard Paiva, Maria C. |
description | Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers.
Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes. |
doi_str_mv | 10.1002/open.201402135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4420582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066246766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</originalsourceid><addsrcrecordid>eNqNkctOGzEUhi1UBBGwZYkiddNNgu9jbypFEZdWCCoBa8v2nGkGzdipnWkFKx6BZ-yTdEJCoN0Ub-xjf-eT7R-hQ4LHBGN6HOcQxhQTjilhYgsNKNFkRJhkH96sd9FBzne4HwXXRMgdtEuFllphNUBfr6Gpfj8-TXKG1jVQDk-74Bd1DLapH_ryLNn5DAIML22IqXYuhjysUmyHU5v64nl_0TnI-2i7sk2Gg_W8h25PT26m56OLq7Mv08nFyAtdiJEFC1AWxHJXSgqegMCFs7rkzitZ-cqBKjlnigpHKu8YF1YVnhaYcucYZXvo88o771wLpYewSLYx81S3Nt2baGvz90moZ-Z7_Gk4p1iopeDTWpDijw7ywrR19tA0NkDssiFSCUUEU_w9KNai0EL26Md_0LvYpf4bs2FYSsplIZfUeEX5FHNOUG3uTbBZhmqWoZpNqH3D0dvXbvCXCHtAr4BfdQP3_9GZq28nl6_yP-LcsEU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066246766</pqid></control><display><type>article</type><title>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cunha, Eunice ; Proença, Maria Fernanda ; Costa, Florinda ; Fernandes, António J. ; Ferro, Marta A. C. ; Lopes, Paulo E. ; González-Debs, Mariam ; Melle-Franco, Manuel ; Deepak, Francis Leonard ; Paiva, Maria C.</creator><creatorcontrib>Cunha, Eunice ; Proença, Maria Fernanda ; Costa, Florinda ; Fernandes, António J. ; Ferro, Marta A. C. ; Lopes, Paulo E. ; González-Debs, Mariam ; Melle-Franco, Manuel ; Deepak, Francis Leonard ; Paiva, Maria C.</creatorcontrib><description>Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers.
Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes.</description><identifier>ISSN: 2191-1363</identifier><identifier>EISSN: 2191-1363</identifier><identifier>DOI: 10.1002/open.201402135</identifier><identifier>PMID: 25969808</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Carbon nanotubes ; Communications ; Computer simulation ; Ethanol ; Functional groups ; Graphene ; Interlayers ; Mathematical models ; Modelling ; molecular modelling ; Nanoribbons ; Nanostructure ; nanostructures ; self-assemble ; Self-assembly ; Solvents</subject><ispartof>ChemistryOpen (Weinheim), 2015-04, Vol.4 (2), p.115-119</ispartof><rights>2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</citedby><cites>FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420582/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420582/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25969808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cunha, Eunice</creatorcontrib><creatorcontrib>Proença, Maria Fernanda</creatorcontrib><creatorcontrib>Costa, Florinda</creatorcontrib><creatorcontrib>Fernandes, António J.</creatorcontrib><creatorcontrib>Ferro, Marta A. C.</creatorcontrib><creatorcontrib>Lopes, Paulo E.</creatorcontrib><creatorcontrib>González-Debs, Mariam</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>Deepak, Francis Leonard</creatorcontrib><creatorcontrib>Paiva, Maria C.</creatorcontrib><title>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</title><title>ChemistryOpen (Weinheim)</title><addtitle>ChemistryOpen</addtitle><description>Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers.
Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes.</description><subject>Carbon nanotubes</subject><subject>Communications</subject><subject>Computer simulation</subject><subject>Ethanol</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>molecular modelling</subject><subject>Nanoribbons</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>self-assemble</subject><subject>Self-assembly</subject><subject>Solvents</subject><issn>2191-1363</issn><issn>2191-1363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctOGzEUhi1UBBGwZYkiddNNgu9jbypFEZdWCCoBa8v2nGkGzdipnWkFKx6BZ-yTdEJCoN0Ub-xjf-eT7R-hQ4LHBGN6HOcQxhQTjilhYgsNKNFkRJhkH96sd9FBzne4HwXXRMgdtEuFllphNUBfr6Gpfj8-TXKG1jVQDk-74Bd1DLapH_ryLNn5DAIML22IqXYuhjysUmyHU5v64nl_0TnI-2i7sk2Gg_W8h25PT26m56OLq7Mv08nFyAtdiJEFC1AWxHJXSgqegMCFs7rkzitZ-cqBKjlnigpHKu8YF1YVnhaYcucYZXvo88o771wLpYewSLYx81S3Nt2baGvz90moZ-Z7_Gk4p1iopeDTWpDijw7ywrR19tA0NkDssiFSCUUEU_w9KNai0EL26Md_0LvYpf4bs2FYSsplIZfUeEX5FHNOUG3uTbBZhmqWoZpNqH3D0dvXbvCXCHtAr4BfdQP3_9GZq28nl6_yP-LcsEU</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Cunha, Eunice</creator><creator>Proença, Maria Fernanda</creator><creator>Costa, Florinda</creator><creator>Fernandes, António J.</creator><creator>Ferro, Marta A. C.</creator><creator>Lopes, Paulo E.</creator><creator>González-Debs, Mariam</creator><creator>Melle-Franco, Manuel</creator><creator>Deepak, Francis Leonard</creator><creator>Paiva, Maria C.</creator><general>John Wiley & Sons, Inc</general><general>BlackWell Publishing Ltd</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</title><author>Cunha, Eunice ; Proença, Maria Fernanda ; Costa, Florinda ; Fernandes, António J. ; Ferro, Marta A. C. ; Lopes, Paulo E. ; González-Debs, Mariam ; Melle-Franco, Manuel ; Deepak, Francis Leonard ; Paiva, Maria C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon nanotubes</topic><topic>Communications</topic><topic>Computer simulation</topic><topic>Ethanol</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>molecular modelling</topic><topic>Nanoribbons</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>self-assemble</topic><topic>Self-assembly</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunha, Eunice</creatorcontrib><creatorcontrib>Proença, Maria Fernanda</creatorcontrib><creatorcontrib>Costa, Florinda</creatorcontrib><creatorcontrib>Fernandes, António J.</creatorcontrib><creatorcontrib>Ferro, Marta A. C.</creatorcontrib><creatorcontrib>Lopes, Paulo E.</creatorcontrib><creatorcontrib>González-Debs, Mariam</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>Deepak, Francis Leonard</creatorcontrib><creatorcontrib>Paiva, Maria C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemistryOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunha, Eunice</au><au>Proença, Maria Fernanda</au><au>Costa, Florinda</au><au>Fernandes, António J.</au><au>Ferro, Marta A. C.</au><au>Lopes, Paulo E.</au><au>González-Debs, Mariam</au><au>Melle-Franco, Manuel</au><au>Deepak, Francis Leonard</au><au>Paiva, Maria C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</atitle><jtitle>ChemistryOpen (Weinheim)</jtitle><addtitle>ChemistryOpen</addtitle><date>2015-04</date><risdate>2015</risdate><volume>4</volume><issue>2</issue><spage>115</spage><epage>119</epage><pages>115-119</pages><issn>2191-1363</issn><eissn>2191-1363</eissn><abstract>Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers.
Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>25969808</pmid><doi>10.1002/open.201402135</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-1363 |
ispartof | ChemistryOpen (Weinheim), 2015-04, Vol.4 (2), p.115-119 |
issn | 2191-1363 2191-1363 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4420582 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Carbon nanotubes Communications Computer simulation Ethanol Functional groups Graphene Interlayers Mathematical models Modelling molecular modelling Nanoribbons Nanostructure nanostructures self-assemble Self-assembly Solvents |
title | Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%20Functionalized%20Graphene%20Nanoribbons%20from%20Carbon%20Nanotubes&rft.jtitle=ChemistryOpen%20(Weinheim)&rft.au=Cunha,%20Eunice&rft.date=2015-04&rft.volume=4&rft.issue=2&rft.spage=115&rft.epage=119&rft.pages=115-119&rft.issn=2191-1363&rft.eissn=2191-1363&rft_id=info:doi/10.1002/open.201402135&rft_dat=%3Cproquest_pubme%3E3066246766%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066246766&rft_id=info:pmid/25969808&rfr_iscdi=true |