Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes

Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemistryOpen (Weinheim) 2015-04, Vol.4 (2), p.115-119
Hauptverfasser: Cunha, Eunice, Proença, Maria Fernanda, Costa, Florinda, Fernandes, António J., Ferro, Marta A. C., Lopes, Paulo E., González-Debs, Mariam, Melle-Franco, Manuel, Deepak, Francis Leonard, Paiva, Maria C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 115
container_title ChemistryOpen (Weinheim)
container_volume 4
creator Cunha, Eunice
Proença, Maria Fernanda
Costa, Florinda
Fernandes, António J.
Ferro, Marta A. C.
Lopes, Paulo E.
González-Debs, Mariam
Melle-Franco, Manuel
Deepak, Francis Leonard
Paiva, Maria C.
description Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers. Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes.
doi_str_mv 10.1002/open.201402135
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4420582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066246766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</originalsourceid><addsrcrecordid>eNqNkctOGzEUhi1UBBGwZYkiddNNgu9jbypFEZdWCCoBa8v2nGkGzdipnWkFKx6BZ-yTdEJCoN0Ub-xjf-eT7R-hQ4LHBGN6HOcQxhQTjilhYgsNKNFkRJhkH96sd9FBzne4HwXXRMgdtEuFllphNUBfr6Gpfj8-TXKG1jVQDk-74Bd1DLapH_ryLNn5DAIML22IqXYuhjysUmyHU5v64nl_0TnI-2i7sk2Gg_W8h25PT26m56OLq7Mv08nFyAtdiJEFC1AWxHJXSgqegMCFs7rkzitZ-cqBKjlnigpHKu8YF1YVnhaYcucYZXvo88o771wLpYewSLYx81S3Nt2baGvz90moZ-Z7_Gk4p1iopeDTWpDijw7ywrR19tA0NkDssiFSCUUEU_w9KNai0EL26Md_0LvYpf4bs2FYSsplIZfUeEX5FHNOUG3uTbBZhmqWoZpNqH3D0dvXbvCXCHtAr4BfdQP3_9GZq28nl6_yP-LcsEU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066246766</pqid></control><display><type>article</type><title>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cunha, Eunice ; Proença, Maria Fernanda ; Costa, Florinda ; Fernandes, António J. ; Ferro, Marta A. C. ; Lopes, Paulo E. ; González-Debs, Mariam ; Melle-Franco, Manuel ; Deepak, Francis Leonard ; Paiva, Maria C.</creator><creatorcontrib>Cunha, Eunice ; Proença, Maria Fernanda ; Costa, Florinda ; Fernandes, António J. ; Ferro, Marta A. C. ; Lopes, Paulo E. ; González-Debs, Mariam ; Melle-Franco, Manuel ; Deepak, Francis Leonard ; Paiva, Maria C.</creatorcontrib><description>Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers. Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes.</description><identifier>ISSN: 2191-1363</identifier><identifier>EISSN: 2191-1363</identifier><identifier>DOI: 10.1002/open.201402135</identifier><identifier>PMID: 25969808</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Carbon nanotubes ; Communications ; Computer simulation ; Ethanol ; Functional groups ; Graphene ; Interlayers ; Mathematical models ; Modelling ; molecular modelling ; Nanoribbons ; Nanostructure ; nanostructures ; self-assemble ; Self-assembly ; Solvents</subject><ispartof>ChemistryOpen (Weinheim), 2015-04, Vol.4 (2), p.115-119</ispartof><rights>2014 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</citedby><cites>FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420582/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420582/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25969808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cunha, Eunice</creatorcontrib><creatorcontrib>Proença, Maria Fernanda</creatorcontrib><creatorcontrib>Costa, Florinda</creatorcontrib><creatorcontrib>Fernandes, António J.</creatorcontrib><creatorcontrib>Ferro, Marta A. C.</creatorcontrib><creatorcontrib>Lopes, Paulo E.</creatorcontrib><creatorcontrib>González-Debs, Mariam</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>Deepak, Francis Leonard</creatorcontrib><creatorcontrib>Paiva, Maria C.</creatorcontrib><title>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</title><title>ChemistryOpen (Weinheim)</title><addtitle>ChemistryOpen</addtitle><description>Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers. Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes.</description><subject>Carbon nanotubes</subject><subject>Communications</subject><subject>Computer simulation</subject><subject>Ethanol</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>molecular modelling</subject><subject>Nanoribbons</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>self-assemble</subject><subject>Self-assembly</subject><subject>Solvents</subject><issn>2191-1363</issn><issn>2191-1363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctOGzEUhi1UBBGwZYkiddNNgu9jbypFEZdWCCoBa8v2nGkGzdipnWkFKx6BZ-yTdEJCoN0Ub-xjf-eT7R-hQ4LHBGN6HOcQxhQTjilhYgsNKNFkRJhkH96sd9FBzne4HwXXRMgdtEuFllphNUBfr6Gpfj8-TXKG1jVQDk-74Bd1DLapH_ryLNn5DAIML22IqXYuhjysUmyHU5v64nl_0TnI-2i7sk2Gg_W8h25PT26m56OLq7Mv08nFyAtdiJEFC1AWxHJXSgqegMCFs7rkzitZ-cqBKjlnigpHKu8YF1YVnhaYcucYZXvo88o771wLpYewSLYx81S3Nt2baGvz90moZ-Z7_Gk4p1iopeDTWpDijw7ywrR19tA0NkDssiFSCUUEU_w9KNai0EL26Md_0LvYpf4bs2FYSsplIZfUeEX5FHNOUG3uTbBZhmqWoZpNqH3D0dvXbvCXCHtAr4BfdQP3_9GZq28nl6_yP-LcsEU</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Cunha, Eunice</creator><creator>Proença, Maria Fernanda</creator><creator>Costa, Florinda</creator><creator>Fernandes, António J.</creator><creator>Ferro, Marta A. C.</creator><creator>Lopes, Paulo E.</creator><creator>González-Debs, Mariam</creator><creator>Melle-Franco, Manuel</creator><creator>Deepak, Francis Leonard</creator><creator>Paiva, Maria C.</creator><general>John Wiley &amp; Sons, Inc</general><general>BlackWell Publishing Ltd</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</title><author>Cunha, Eunice ; Proença, Maria Fernanda ; Costa, Florinda ; Fernandes, António J. ; Ferro, Marta A. C. ; Lopes, Paulo E. ; González-Debs, Mariam ; Melle-Franco, Manuel ; Deepak, Francis Leonard ; Paiva, Maria C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5975-aeaeed71a4bd62ec1e507ba9d4bc86fcfbe8d443825b1fcb345a87c27024bb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon nanotubes</topic><topic>Communications</topic><topic>Computer simulation</topic><topic>Ethanol</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>molecular modelling</topic><topic>Nanoribbons</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>self-assemble</topic><topic>Self-assembly</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunha, Eunice</creatorcontrib><creatorcontrib>Proença, Maria Fernanda</creatorcontrib><creatorcontrib>Costa, Florinda</creatorcontrib><creatorcontrib>Fernandes, António J.</creatorcontrib><creatorcontrib>Ferro, Marta A. C.</creatorcontrib><creatorcontrib>Lopes, Paulo E.</creatorcontrib><creatorcontrib>González-Debs, Mariam</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><creatorcontrib>Deepak, Francis Leonard</creatorcontrib><creatorcontrib>Paiva, Maria C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemistryOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunha, Eunice</au><au>Proença, Maria Fernanda</au><au>Costa, Florinda</au><au>Fernandes, António J.</au><au>Ferro, Marta A. C.</au><au>Lopes, Paulo E.</au><au>González-Debs, Mariam</au><au>Melle-Franco, Manuel</au><au>Deepak, Francis Leonard</au><au>Paiva, Maria C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes</atitle><jtitle>ChemistryOpen (Weinheim)</jtitle><addtitle>ChemistryOpen</addtitle><date>2015-04</date><risdate>2015</risdate><volume>4</volume><issue>2</issue><spage>115</spage><epage>119</epage><pages>115-119</pages><issn>2191-1363</issn><eissn>2191-1363</eissn><abstract>Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine‐functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few‐layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X‐ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine‐tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers. Ribbons from tubes: Pyrrolidine‐functionalized graphene nanoribbons were observed to assemble into few‐layer stacks. The interlayer distance was measured by transmission electron microscopy and X‐ray diffraction, and calculated by computer modelling, to be approximately 0.5 nm. The nanoribbons were obtained by unzipping of functionalized carbon nanotubes.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>25969808</pmid><doi>10.1002/open.201402135</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-1363
ispartof ChemistryOpen (Weinheim), 2015-04, Vol.4 (2), p.115-119
issn 2191-1363
2191-1363
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4420582
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central; Free Full-Text Journals in Chemistry
subjects Carbon nanotubes
Communications
Computer simulation
Ethanol
Functional groups
Graphene
Interlayers
Mathematical models
Modelling
molecular modelling
Nanoribbons
Nanostructure
nanostructures
self-assemble
Self-assembly
Solvents
title Self‐Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%20Functionalized%20Graphene%20Nanoribbons%20from%20Carbon%20Nanotubes&rft.jtitle=ChemistryOpen%20(Weinheim)&rft.au=Cunha,%20Eunice&rft.date=2015-04&rft.volume=4&rft.issue=2&rft.spage=115&rft.epage=119&rft.pages=115-119&rft.issn=2191-1363&rft.eissn=2191-1363&rft_id=info:doi/10.1002/open.201402135&rft_dat=%3Cproquest_pubme%3E3066246766%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066246766&rft_id=info:pmid/25969808&rfr_iscdi=true