Optimizing sparse sequencing of single cells for highly multiplex copy number profiling

Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2015-05, Vol.25 (5), p.714-724
Hauptverfasser: Baslan, Timour, Kendall, Jude, Ward, Brian, Cox, Hilary, Leotta, Anthony, Rodgers, Linda, Riggs, Michael, D'Italia, Sean, Sun, Guoli, Yong, Mao, Miskimen, Kristy, Gilmore, Hannah, Saborowski, Michael, Dimitrova, Nevenka, Krasnitz, Alexander, Harris, Lyndsay, Wigler, Michael, Hicks, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 5
container_start_page 714
container_title Genome research
container_volume 25
creator Baslan, Timour
Kendall, Jude
Ward, Brian
Cox, Hilary
Leotta, Anthony
Rodgers, Linda
Riggs, Michael
D'Italia, Sean
Sun, Guoli
Yong, Mao
Miskimen, Kristy
Gilmore, Hannah
Saborowski, Michael
Dimitrova, Nevenka
Krasnitz, Alexander
Harris, Lyndsay
Wigler, Michael
Hicks, James
description Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.
doi_str_mv 10.1101/gr.188060.114
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4417119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705066798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1U1IWlR66Vj71k8cR2bF8qVYhCpZW4gDhaTmJnXTlxaicVy69vVktRe-I0M_Y3T_P0ELoEsgEgcNWlDUhJqsPITtAZcKYKzir1YemJlIUiHFboPOefhBDKpPyIViWXXCoOZ-jpfpx871_80OE8mpQtzvbXbIfm8BIdzksNFjc2hIxdTHjnu13Y434Okx-DfcZNHPd4mPvaJjym6HxYVi7QqTMh20-vdY0ev988XN8V2_vbH9fftkXDZDUVQAVzpVG1UpyUvJFCtpKykioGrWsprR1vlWGKKwPEEtpUpVK1Fc4KUETQNfp61B3nurdtY4cpmaDH5HuT9joar___GfxOd_G3ZgwEgFoEvrwKpLj4zpPufT64NYONc9YgCCdVJZR8H62EkFJUlC5ocUSbFHNO1r1dBEQfctNd0sfclpEt_Od_bbzRf4OifwDRu5S2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677887633</pqid></control><display><type>article</type><title>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Baslan, Timour ; Kendall, Jude ; Ward, Brian ; Cox, Hilary ; Leotta, Anthony ; Rodgers, Linda ; Riggs, Michael ; D'Italia, Sean ; Sun, Guoli ; Yong, Mao ; Miskimen, Kristy ; Gilmore, Hannah ; Saborowski, Michael ; Dimitrova, Nevenka ; Krasnitz, Alexander ; Harris, Lyndsay ; Wigler, Michael ; Hicks, James</creator><creatorcontrib>Baslan, Timour ; Kendall, Jude ; Ward, Brian ; Cox, Hilary ; Leotta, Anthony ; Rodgers, Linda ; Riggs, Michael ; D'Italia, Sean ; Sun, Guoli ; Yong, Mao ; Miskimen, Kristy ; Gilmore, Hannah ; Saborowski, Michael ; Dimitrova, Nevenka ; Krasnitz, Alexander ; Harris, Lyndsay ; Wigler, Michael ; Hicks, James</creatorcontrib><description>Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.188060.114</identifier><identifier>PMID: 25858951</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Algorithms ; Base Sequence ; Cell Line, Tumor ; DNA Copy Number Variations ; DNA, Neoplasm - genetics ; Genome, Human ; Humans ; Method ; Molecular Sequence Data ; Multiplex Polymerase Chain Reaction - methods ; Sequence Analysis, DNA - methods ; Single-Cell Analysis - methods</subject><ispartof>Genome research, 2015-05, Vol.25 (5), p.714-724</ispartof><rights>2015 Baslan et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</citedby><cites>FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417119/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417119/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25858951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baslan, Timour</creatorcontrib><creatorcontrib>Kendall, Jude</creatorcontrib><creatorcontrib>Ward, Brian</creatorcontrib><creatorcontrib>Cox, Hilary</creatorcontrib><creatorcontrib>Leotta, Anthony</creatorcontrib><creatorcontrib>Rodgers, Linda</creatorcontrib><creatorcontrib>Riggs, Michael</creatorcontrib><creatorcontrib>D'Italia, Sean</creatorcontrib><creatorcontrib>Sun, Guoli</creatorcontrib><creatorcontrib>Yong, Mao</creatorcontrib><creatorcontrib>Miskimen, Kristy</creatorcontrib><creatorcontrib>Gilmore, Hannah</creatorcontrib><creatorcontrib>Saborowski, Michael</creatorcontrib><creatorcontrib>Dimitrova, Nevenka</creatorcontrib><creatorcontrib>Krasnitz, Alexander</creatorcontrib><creatorcontrib>Harris, Lyndsay</creatorcontrib><creatorcontrib>Wigler, Michael</creatorcontrib><creatorcontrib>Hicks, James</creatorcontrib><title>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.</description><subject>Algorithms</subject><subject>Base Sequence</subject><subject>Cell Line, Tumor</subject><subject>DNA Copy Number Variations</subject><subject>DNA, Neoplasm - genetics</subject><subject>Genome, Human</subject><subject>Humans</subject><subject>Method</subject><subject>Molecular Sequence Data</subject><subject>Multiplex Polymerase Chain Reaction - methods</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single-Cell Analysis - methods</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQhS1U1IWlR66Vj71k8cR2bF8qVYhCpZW4gDhaTmJnXTlxaicVy69vVktRe-I0M_Y3T_P0ELoEsgEgcNWlDUhJqsPITtAZcKYKzir1YemJlIUiHFboPOefhBDKpPyIViWXXCoOZ-jpfpx871_80OE8mpQtzvbXbIfm8BIdzksNFjc2hIxdTHjnu13Y434Okx-DfcZNHPd4mPvaJjym6HxYVi7QqTMh20-vdY0ev988XN8V2_vbH9fftkXDZDUVQAVzpVG1UpyUvJFCtpKykioGrWsprR1vlWGKKwPEEtpUpVK1Fc4KUETQNfp61B3nurdtY4cpmaDH5HuT9joar___GfxOd_G3ZgwEgFoEvrwKpLj4zpPufT64NYONc9YgCCdVJZR8H62EkFJUlC5ocUSbFHNO1r1dBEQfctNd0sfclpEt_Od_bbzRf4OifwDRu5S2</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Baslan, Timour</creator><creator>Kendall, Jude</creator><creator>Ward, Brian</creator><creator>Cox, Hilary</creator><creator>Leotta, Anthony</creator><creator>Rodgers, Linda</creator><creator>Riggs, Michael</creator><creator>D'Italia, Sean</creator><creator>Sun, Guoli</creator><creator>Yong, Mao</creator><creator>Miskimen, Kristy</creator><creator>Gilmore, Hannah</creator><creator>Saborowski, Michael</creator><creator>Dimitrova, Nevenka</creator><creator>Krasnitz, Alexander</creator><creator>Harris, Lyndsay</creator><creator>Wigler, Michael</creator><creator>Hicks, James</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</title><author>Baslan, Timour ; Kendall, Jude ; Ward, Brian ; Cox, Hilary ; Leotta, Anthony ; Rodgers, Linda ; Riggs, Michael ; D'Italia, Sean ; Sun, Guoli ; Yong, Mao ; Miskimen, Kristy ; Gilmore, Hannah ; Saborowski, Michael ; Dimitrova, Nevenka ; Krasnitz, Alexander ; Harris, Lyndsay ; Wigler, Michael ; Hicks, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Base Sequence</topic><topic>Cell Line, Tumor</topic><topic>DNA Copy Number Variations</topic><topic>DNA, Neoplasm - genetics</topic><topic>Genome, Human</topic><topic>Humans</topic><topic>Method</topic><topic>Molecular Sequence Data</topic><topic>Multiplex Polymerase Chain Reaction - methods</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single-Cell Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baslan, Timour</creatorcontrib><creatorcontrib>Kendall, Jude</creatorcontrib><creatorcontrib>Ward, Brian</creatorcontrib><creatorcontrib>Cox, Hilary</creatorcontrib><creatorcontrib>Leotta, Anthony</creatorcontrib><creatorcontrib>Rodgers, Linda</creatorcontrib><creatorcontrib>Riggs, Michael</creatorcontrib><creatorcontrib>D'Italia, Sean</creatorcontrib><creatorcontrib>Sun, Guoli</creatorcontrib><creatorcontrib>Yong, Mao</creatorcontrib><creatorcontrib>Miskimen, Kristy</creatorcontrib><creatorcontrib>Gilmore, Hannah</creatorcontrib><creatorcontrib>Saborowski, Michael</creatorcontrib><creatorcontrib>Dimitrova, Nevenka</creatorcontrib><creatorcontrib>Krasnitz, Alexander</creatorcontrib><creatorcontrib>Harris, Lyndsay</creatorcontrib><creatorcontrib>Wigler, Michael</creatorcontrib><creatorcontrib>Hicks, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baslan, Timour</au><au>Kendall, Jude</au><au>Ward, Brian</au><au>Cox, Hilary</au><au>Leotta, Anthony</au><au>Rodgers, Linda</au><au>Riggs, Michael</au><au>D'Italia, Sean</au><au>Sun, Guoli</au><au>Yong, Mao</au><au>Miskimen, Kristy</au><au>Gilmore, Hannah</au><au>Saborowski, Michael</au><au>Dimitrova, Nevenka</au><au>Krasnitz, Alexander</au><au>Harris, Lyndsay</au><au>Wigler, Michael</au><au>Hicks, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>25</volume><issue>5</issue><spage>714</spage><epage>724</epage><pages>714-724</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25858951</pmid><doi>10.1101/gr.188060.114</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2015-05, Vol.25 (5), p.714-724
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4417119
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Base Sequence
Cell Line, Tumor
DNA Copy Number Variations
DNA, Neoplasm - genetics
Genome, Human
Humans
Method
Molecular Sequence Data
Multiplex Polymerase Chain Reaction - methods
Sequence Analysis, DNA - methods
Single-Cell Analysis - methods
title Optimizing sparse sequencing of single cells for highly multiplex copy number profiling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20sparse%20sequencing%20of%20single%20cells%20for%20highly%20multiplex%20copy%20number%20profiling&rft.jtitle=Genome%20research&rft.au=Baslan,%20Timour&rft.date=2015-05-01&rft.volume=25&rft.issue=5&rft.spage=714&rft.epage=724&rft.pages=714-724&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.188060.114&rft_dat=%3Cproquest_pubme%3E1705066798%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677887633&rft_id=info:pmid/25858951&rfr_iscdi=true