Optimizing sparse sequencing of single cells for highly multiplex copy number profiling
Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the ca...
Gespeichert in:
Veröffentlicht in: | Genome research 2015-05, Vol.25 (5), p.714-724 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 5 |
container_start_page | 714 |
container_title | Genome research |
container_volume | 25 |
creator | Baslan, Timour Kendall, Jude Ward, Brian Cox, Hilary Leotta, Anthony Rodgers, Linda Riggs, Michael D'Italia, Sean Sun, Guoli Yong, Mao Miskimen, Kristy Gilmore, Hannah Saborowski, Michael Dimitrova, Nevenka Krasnitz, Alexander Harris, Lyndsay Wigler, Michael Hicks, James |
description | Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage. |
doi_str_mv | 10.1101/gr.188060.114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4417119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705066798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1U1IWlR66Vj71k8cR2bF8qVYhCpZW4gDhaTmJnXTlxaicVy69vVktRe-I0M_Y3T_P0ELoEsgEgcNWlDUhJqsPITtAZcKYKzir1YemJlIUiHFboPOefhBDKpPyIViWXXCoOZ-jpfpx871_80OE8mpQtzvbXbIfm8BIdzksNFjc2hIxdTHjnu13Y434Okx-DfcZNHPd4mPvaJjym6HxYVi7QqTMh20-vdY0ev988XN8V2_vbH9fftkXDZDUVQAVzpVG1UpyUvJFCtpKykioGrWsprR1vlWGKKwPEEtpUpVK1Fc4KUETQNfp61B3nurdtY4cpmaDH5HuT9joar___GfxOd_G3ZgwEgFoEvrwKpLj4zpPufT64NYONc9YgCCdVJZR8H62EkFJUlC5ocUSbFHNO1r1dBEQfctNd0sfclpEt_Od_bbzRf4OifwDRu5S2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677887633</pqid></control><display><type>article</type><title>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Baslan, Timour ; Kendall, Jude ; Ward, Brian ; Cox, Hilary ; Leotta, Anthony ; Rodgers, Linda ; Riggs, Michael ; D'Italia, Sean ; Sun, Guoli ; Yong, Mao ; Miskimen, Kristy ; Gilmore, Hannah ; Saborowski, Michael ; Dimitrova, Nevenka ; Krasnitz, Alexander ; Harris, Lyndsay ; Wigler, Michael ; Hicks, James</creator><creatorcontrib>Baslan, Timour ; Kendall, Jude ; Ward, Brian ; Cox, Hilary ; Leotta, Anthony ; Rodgers, Linda ; Riggs, Michael ; D'Italia, Sean ; Sun, Guoli ; Yong, Mao ; Miskimen, Kristy ; Gilmore, Hannah ; Saborowski, Michael ; Dimitrova, Nevenka ; Krasnitz, Alexander ; Harris, Lyndsay ; Wigler, Michael ; Hicks, James</creatorcontrib><description>Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.188060.114</identifier><identifier>PMID: 25858951</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Algorithms ; Base Sequence ; Cell Line, Tumor ; DNA Copy Number Variations ; DNA, Neoplasm - genetics ; Genome, Human ; Humans ; Method ; Molecular Sequence Data ; Multiplex Polymerase Chain Reaction - methods ; Sequence Analysis, DNA - methods ; Single-Cell Analysis - methods</subject><ispartof>Genome research, 2015-05, Vol.25 (5), p.714-724</ispartof><rights>2015 Baslan et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</citedby><cites>FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417119/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417119/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25858951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baslan, Timour</creatorcontrib><creatorcontrib>Kendall, Jude</creatorcontrib><creatorcontrib>Ward, Brian</creatorcontrib><creatorcontrib>Cox, Hilary</creatorcontrib><creatorcontrib>Leotta, Anthony</creatorcontrib><creatorcontrib>Rodgers, Linda</creatorcontrib><creatorcontrib>Riggs, Michael</creatorcontrib><creatorcontrib>D'Italia, Sean</creatorcontrib><creatorcontrib>Sun, Guoli</creatorcontrib><creatorcontrib>Yong, Mao</creatorcontrib><creatorcontrib>Miskimen, Kristy</creatorcontrib><creatorcontrib>Gilmore, Hannah</creatorcontrib><creatorcontrib>Saborowski, Michael</creatorcontrib><creatorcontrib>Dimitrova, Nevenka</creatorcontrib><creatorcontrib>Krasnitz, Alexander</creatorcontrib><creatorcontrib>Harris, Lyndsay</creatorcontrib><creatorcontrib>Wigler, Michael</creatorcontrib><creatorcontrib>Hicks, James</creatorcontrib><title>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.</description><subject>Algorithms</subject><subject>Base Sequence</subject><subject>Cell Line, Tumor</subject><subject>DNA Copy Number Variations</subject><subject>DNA, Neoplasm - genetics</subject><subject>Genome, Human</subject><subject>Humans</subject><subject>Method</subject><subject>Molecular Sequence Data</subject><subject>Multiplex Polymerase Chain Reaction - methods</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single-Cell Analysis - methods</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQhS1U1IWlR66Vj71k8cR2bF8qVYhCpZW4gDhaTmJnXTlxaicVy69vVktRe-I0M_Y3T_P0ELoEsgEgcNWlDUhJqsPITtAZcKYKzir1YemJlIUiHFboPOefhBDKpPyIViWXXCoOZ-jpfpx871_80OE8mpQtzvbXbIfm8BIdzksNFjc2hIxdTHjnu13Y434Okx-DfcZNHPd4mPvaJjym6HxYVi7QqTMh20-vdY0ev988XN8V2_vbH9fftkXDZDUVQAVzpVG1UpyUvJFCtpKykioGrWsprR1vlWGKKwPEEtpUpVK1Fc4KUETQNfp61B3nurdtY4cpmaDH5HuT9joar___GfxOd_G3ZgwEgFoEvrwKpLj4zpPufT64NYONc9YgCCdVJZR8H62EkFJUlC5ocUSbFHNO1r1dBEQfctNd0sfclpEt_Od_bbzRf4OifwDRu5S2</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Baslan, Timour</creator><creator>Kendall, Jude</creator><creator>Ward, Brian</creator><creator>Cox, Hilary</creator><creator>Leotta, Anthony</creator><creator>Rodgers, Linda</creator><creator>Riggs, Michael</creator><creator>D'Italia, Sean</creator><creator>Sun, Guoli</creator><creator>Yong, Mao</creator><creator>Miskimen, Kristy</creator><creator>Gilmore, Hannah</creator><creator>Saborowski, Michael</creator><creator>Dimitrova, Nevenka</creator><creator>Krasnitz, Alexander</creator><creator>Harris, Lyndsay</creator><creator>Wigler, Michael</creator><creator>Hicks, James</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</title><author>Baslan, Timour ; Kendall, Jude ; Ward, Brian ; Cox, Hilary ; Leotta, Anthony ; Rodgers, Linda ; Riggs, Michael ; D'Italia, Sean ; Sun, Guoli ; Yong, Mao ; Miskimen, Kristy ; Gilmore, Hannah ; Saborowski, Michael ; Dimitrova, Nevenka ; Krasnitz, Alexander ; Harris, Lyndsay ; Wigler, Michael ; Hicks, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-1374f2a9b995025c878d83423941dfd33bf5d9a4959a10e03c6299be7fe719073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Base Sequence</topic><topic>Cell Line, Tumor</topic><topic>DNA Copy Number Variations</topic><topic>DNA, Neoplasm - genetics</topic><topic>Genome, Human</topic><topic>Humans</topic><topic>Method</topic><topic>Molecular Sequence Data</topic><topic>Multiplex Polymerase Chain Reaction - methods</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single-Cell Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baslan, Timour</creatorcontrib><creatorcontrib>Kendall, Jude</creatorcontrib><creatorcontrib>Ward, Brian</creatorcontrib><creatorcontrib>Cox, Hilary</creatorcontrib><creatorcontrib>Leotta, Anthony</creatorcontrib><creatorcontrib>Rodgers, Linda</creatorcontrib><creatorcontrib>Riggs, Michael</creatorcontrib><creatorcontrib>D'Italia, Sean</creatorcontrib><creatorcontrib>Sun, Guoli</creatorcontrib><creatorcontrib>Yong, Mao</creatorcontrib><creatorcontrib>Miskimen, Kristy</creatorcontrib><creatorcontrib>Gilmore, Hannah</creatorcontrib><creatorcontrib>Saborowski, Michael</creatorcontrib><creatorcontrib>Dimitrova, Nevenka</creatorcontrib><creatorcontrib>Krasnitz, Alexander</creatorcontrib><creatorcontrib>Harris, Lyndsay</creatorcontrib><creatorcontrib>Wigler, Michael</creatorcontrib><creatorcontrib>Hicks, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baslan, Timour</au><au>Kendall, Jude</au><au>Ward, Brian</au><au>Cox, Hilary</au><au>Leotta, Anthony</au><au>Rodgers, Linda</au><au>Riggs, Michael</au><au>D'Italia, Sean</au><au>Sun, Guoli</au><au>Yong, Mao</au><au>Miskimen, Kristy</au><au>Gilmore, Hannah</au><au>Saborowski, Michael</au><au>Dimitrova, Nevenka</au><au>Krasnitz, Alexander</au><au>Harris, Lyndsay</au><au>Wigler, Michael</au><au>Hicks, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing sparse sequencing of single cells for highly multiplex copy number profiling</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>25</volume><issue>5</issue><spage>714</spage><epage>724</epage><pages>714-724</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25858951</pmid><doi>10.1101/gr.188060.114</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2015-05, Vol.25 (5), p.714-724 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4417119 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Base Sequence Cell Line, Tumor DNA Copy Number Variations DNA, Neoplasm - genetics Genome, Human Humans Method Molecular Sequence Data Multiplex Polymerase Chain Reaction - methods Sequence Analysis, DNA - methods Single-Cell Analysis - methods |
title | Optimizing sparse sequencing of single cells for highly multiplex copy number profiling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20sparse%20sequencing%20of%20single%20cells%20for%20highly%20multiplex%20copy%20number%20profiling&rft.jtitle=Genome%20research&rft.au=Baslan,%20Timour&rft.date=2015-05-01&rft.volume=25&rft.issue=5&rft.spage=714&rft.epage=724&rft.pages=714-724&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.188060.114&rft_dat=%3Cproquest_pubme%3E1705066798%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677887633&rft_id=info:pmid/25858951&rfr_iscdi=true |