Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex

Synapses are plastic and can be modified by changes of spike timing. While most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2015-04, Vol.86 (2), p.514-528
Hauptverfasser: D'amour, James A., Froemke, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 2
container_start_page 514
container_title Neuron (Cambridge, Mass.)
container_volume 86
creator D'amour, James A.
Froemke, Robert C.
description Synapses are plastic and can be modified by changes of spike timing. While most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ∼10 msec. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation, and adjusted the excitatory-inhibitory ratio of events paired together with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance.
doi_str_mv 10.1016/j.neuron.2015.03.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4409545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731500210X</els_id><sourcerecordid>1732833766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-712f95604a922569e4ce2b780044654a0ca01d8e937a14f5bcb1474d2356327f3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCP0AoEhcuCePPxBekaimlUiUQlLPlOJOul117sZOq--9x2VI-DpyskZ95Z955CXlBoaFA1Zt1E3BOMTQMqGyAN0DFI7KgoNtaUK0fkwV0WtWKtfyIHOe8hkJITZ-SIyY7wQXIBfl8EVa-91NM-8qGoTq7dX6yP8svO_8N6yu_9eG6foc7DAOGqfq0sXnyhdpXPlTTCqvTeTgILGOa8PYZeTLaTcbn9-8J-fr-7Gr5ob78eH6xPL2sndQw1S1lo5YKhNWMSaVROGR92wEIoaSw4CzQoUPNW0vFKHvXU9GKgXGpOGtHfkLeHnR3c7_FwZXlkt2YXfJbm_YmWm_-_gl-Za7jjRECtBSyCLy-F0jx-4x5MlufHW42NmCcs6EtZx3nrVIFffUPuo5zCsWeoapjTADvaKHEgXIp5pxwfFiGgrkLzazNITRzF5oBbkokpe3ln0Yemn6l9NsplnPeeEwmO4_B4eATuskM0f9_wg-ABKo2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682240381</pqid></control><display><type>article</type><title>Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>D'amour, James A. ; Froemke, Robert C.</creator><creatorcontrib>D'amour, James A. ; Froemke, Robert C.</creatorcontrib><description>Synapses are plastic and can be modified by changes of spike timing. While most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ∼10 msec. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation, and adjusted the excitatory-inhibitory ratio of events paired together with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.03.014</identifier><identifier>PMID: 25843405</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Auditory Cortex - physiology ; Electrodes ; Experiments ; GABA Antagonists - pharmacology ; In Vitro Techniques ; Long-Term Potentiation - physiology ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity - physiology ; Neurons ; Patch-Clamp Techniques ; Presynaptic Terminals - physiology ; Pyramidal Cells - physiology ; Receptors, N-Methyl-D-Aspartate - metabolism ; Rodents ; Studies</subject><ispartof>Neuron (Cambridge, Mass.), 2015-04, Vol.86 (2), p.514-528</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 22, 2015</rights><rights>2015 Published by Elsevier Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-712f95604a922569e4ce2b780044654a0ca01d8e937a14f5bcb1474d2356327f3</citedby><cites>FETCH-LOGICAL-c590t-712f95604a922569e4ce2b780044654a0ca01d8e937a14f5bcb1474d2356327f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089662731500210X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25843405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D'amour, James A.</creatorcontrib><creatorcontrib>Froemke, Robert C.</creatorcontrib><title>Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Synapses are plastic and can be modified by changes of spike timing. While most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ∼10 msec. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation, and adjusted the excitatory-inhibitory ratio of events paired together with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Auditory Cortex - physiology</subject><subject>Electrodes</subject><subject>Experiments</subject><subject>GABA Antagonists - pharmacology</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Patch-Clamp Techniques</subject><subject>Presynaptic Terminals - physiology</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Rodents</subject><subject>Studies</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EotvCP0AoEhcuCePPxBekaimlUiUQlLPlOJOul117sZOq--9x2VI-DpyskZ95Z955CXlBoaFA1Zt1E3BOMTQMqGyAN0DFI7KgoNtaUK0fkwV0WtWKtfyIHOe8hkJITZ-SIyY7wQXIBfl8EVa-91NM-8qGoTq7dX6yP8svO_8N6yu_9eG6foc7DAOGqfq0sXnyhdpXPlTTCqvTeTgILGOa8PYZeTLaTcbn9-8J-fr-7Gr5ob78eH6xPL2sndQw1S1lo5YKhNWMSaVROGR92wEIoaSw4CzQoUPNW0vFKHvXU9GKgXGpOGtHfkLeHnR3c7_FwZXlkt2YXfJbm_YmWm_-_gl-Za7jjRECtBSyCLy-F0jx-4x5MlufHW42NmCcs6EtZx3nrVIFffUPuo5zCsWeoapjTADvaKHEgXIp5pxwfFiGgrkLzazNITRzF5oBbkokpe3ln0Yemn6l9NsplnPeeEwmO4_B4eATuskM0f9_wg-ABKo2</recordid><startdate>20150422</startdate><enddate>20150422</enddate><creator>D'amour, James A.</creator><creator>Froemke, Robert C.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150422</creationdate><title>Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex</title><author>D'amour, James A. ; Froemke, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-712f95604a922569e4ce2b780044654a0ca01d8e937a14f5bcb1474d2356327f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Auditory Cortex - physiology</topic><topic>Electrodes</topic><topic>Experiments</topic><topic>GABA Antagonists - pharmacology</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Patch-Clamp Techniques</topic><topic>Presynaptic Terminals - physiology</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Rodents</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'amour, James A.</creatorcontrib><creatorcontrib>Froemke, Robert C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'amour, James A.</au><au>Froemke, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-04-22</date><risdate>2015</risdate><volume>86</volume><issue>2</issue><spage>514</spage><epage>528</epage><pages>514-528</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Synapses are plastic and can be modified by changes of spike timing. While most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ∼10 msec. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation, and adjusted the excitatory-inhibitory ratio of events paired together with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25843405</pmid><doi>10.1016/j.neuron.2015.03.014</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2015-04, Vol.86 (2), p.514-528
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4409545
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
Auditory Cortex - physiology
Electrodes
Experiments
GABA Antagonists - pharmacology
In Vitro Techniques
Long-Term Potentiation - physiology
Mice
Mice, Inbred C57BL
Neuronal Plasticity - physiology
Neurons
Patch-Clamp Techniques
Presynaptic Terminals - physiology
Pyramidal Cells - physiology
Receptors, N-Methyl-D-Aspartate - metabolism
Rodents
Studies
title Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitory%20and%20Excitatory%20Spike-Timing-Dependent%20Plasticity%20in%20the%20Auditory%20Cortex&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=D'amour,%20James%20A.&rft.date=2015-04-22&rft.volume=86&rft.issue=2&rft.spage=514&rft.epage=528&rft.pages=514-528&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.03.014&rft_dat=%3Cproquest_pubme%3E1732833766%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682240381&rft_id=info:pmid/25843405&rft_els_id=S089662731500210X&rfr_iscdi=true