MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network

Oxidative stress plays an important role in cardiovascular diseases. Studies have shown that miR-1 plays an important role in the regulation of cardiomyocyte apoptosis, which can be the result of oxidative stress. This study was designed to determine whether increased miR-1 levels lead to alteration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stress & chaperones 2015-05, Vol.20 (3), p.411-420
Hauptverfasser: Wang, Lu, Yuan, Ye, Li, Jing, Ren, Hequn, Cai, Qingxin, Chen, Xu, Liang, Haihai, Shan, Hongli, Fu, Zidong Donna, Gao, Xu, Lv, Yanjie, Yang, Baofeng, Zhang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 3
container_start_page 411
container_title Cell stress & chaperones
container_volume 20
creator Wang, Lu
Yuan, Ye
Li, Jing
Ren, Hequn
Cai, Qingxin
Chen, Xu
Liang, Haihai
Shan, Hongli
Fu, Zidong Donna
Gao, Xu
Lv, Yanjie
Yang, Baofeng
Zhang, Yan
description Oxidative stress plays an important role in cardiovascular diseases. Studies have shown that miR-1 plays an important role in the regulation of cardiomyocyte apoptosis, which can be the result of oxidative stress. This study was designed to determine whether increased miR-1 levels lead to alterations in the expression of proteins related to oxidative stress, which could contribute to heart dysfunction. We compared cardiac function in wild-type (WT) and miR-1 transgene (miR-1/Tg) C57BL/6 mice (n≥10/group). Echocardiography showed that stroke volume (SV), ejection fraction (EF), and fractional shortening (FS) were significantly decreased in miR-1/Tg mice. Concomitantly, the level of reactive oxygen species (ROS) was elevated in the cardiomyocytes from the miR-1/Tg mice, and activities of lactate dehydrogenase (LDH) and creatinine kinase (CK) in plasma were also increased in the miR-1/Tg mice. All of these changes could be reversed by LNA-anti-miR-1. In the cardiomyocytes of neonatal Wistar rats, overexpression of miR-1 exhibits higher ROS levels and lower resistance to H2O2-induced oxidative stress. We demonstrated that SOD1, Gclc, and G6PD are novel targets of miR-1 for post-transcriptional repression. MicroRNA-1 post-transcriptionally represses the expression of SOD1, Gclc, and G6PD, which is likely to contribute to the increased ROS level and the susceptibility to oxidative stress of the hearts of miR-1 transgenic mice.
doi_str_mv 10.1007/s12192-014-0565-9
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4406930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24671582</jstor_id><sourcerecordid>24671582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-ed875861eb4efa1839876159ebb8e5be9f2e31d8536d43e3e49aad905126d7623</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCEQCYEP4ACylAsXg9uv8VyQooiXFEBCcLY8Mz0bL7v2YnsX8vd4mBACB052q6uqq7ua5jGw58BY-yIDh45TBpIypRXt7jTHILWmwLW5W_9CKWpAqqPmQc5rVjltC_ebI66UEQDiuAnv_ZDipw9nFIhbrZI7uIKZDC6N3g0k_vCjK_6AJJeEOZP-iuxiLrQkF_KQ_K74GNyGbOPoJz-4uSRxIuUSiQu1mgVCIQHL95i-PmzuTW6T8dH1e9J8ef3q8_lbevHxzbvzsws6KM0LxdG0ymjAXuLkwIjOtBpUh31vUPXYTRwFjEYJPUqBAmXn3NgxVRcfW83FSfNy0d3t-y2OA4ZqeGN3yW9durLReft3J_hLu4oHKyXTnWBV4Nm1QIrf9piL3fo84GbjAsZ9tqCrwVaadp51-g90HfepHuUXSnbADJ9RsKDquXNOON2YAWbnNO2Spq1p2jlN21XO09tb3DB-x1cBfAHk2gorTLdG_0f1yUJa5xLTH1GpW1CGi5_ab7Zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674910822</pqid></control><display><type>article</type><title>MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Lu ; Yuan, Ye ; Li, Jing ; Ren, Hequn ; Cai, Qingxin ; Chen, Xu ; Liang, Haihai ; Shan, Hongli ; Fu, Zidong Donna ; Gao, Xu ; Lv, Yanjie ; Yang, Baofeng ; Zhang, Yan</creator><creatorcontrib>Wang, Lu ; Yuan, Ye ; Li, Jing ; Ren, Hequn ; Cai, Qingxin ; Chen, Xu ; Liang, Haihai ; Shan, Hongli ; Fu, Zidong Donna ; Gao, Xu ; Lv, Yanjie ; Yang, Baofeng ; Zhang, Yan</creatorcontrib><description>Oxidative stress plays an important role in cardiovascular diseases. Studies have shown that miR-1 plays an important role in the regulation of cardiomyocyte apoptosis, which can be the result of oxidative stress. This study was designed to determine whether increased miR-1 levels lead to alterations in the expression of proteins related to oxidative stress, which could contribute to heart dysfunction. We compared cardiac function in wild-type (WT) and miR-1 transgene (miR-1/Tg) C57BL/6 mice (n≥10/group). Echocardiography showed that stroke volume (SV), ejection fraction (EF), and fractional shortening (FS) were significantly decreased in miR-1/Tg mice. Concomitantly, the level of reactive oxygen species (ROS) was elevated in the cardiomyocytes from the miR-1/Tg mice, and activities of lactate dehydrogenase (LDH) and creatinine kinase (CK) in plasma were also increased in the miR-1/Tg mice. All of these changes could be reversed by LNA-anti-miR-1. In the cardiomyocytes of neonatal Wistar rats, overexpression of miR-1 exhibits higher ROS levels and lower resistance to H2O2-induced oxidative stress. We demonstrated that SOD1, Gclc, and G6PD are novel targets of miR-1 for post-transcriptional repression. MicroRNA-1 post-transcriptionally represses the expression of SOD1, Gclc, and G6PD, which is likely to contribute to the increased ROS level and the susceptibility to oxidative stress of the hearts of miR-1 transgenic mice.</description><identifier>ISSN: 1355-8145</identifier><identifier>EISSN: 1466-1268</identifier><identifier>DOI: 10.1007/s12192-014-0565-9</identifier><identifier>PMID: 25583113</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Animals ; Antioxidants - metabolism ; Apoptosis ; Base Sequence ; Binding Sites ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Biology ; Cells, Cultured ; Enzyme Repression ; Enzymes ; Glucosephosphate Dehydrogenase - genetics ; Glucosephosphate Dehydrogenase - metabolism ; Glutamate-Cysteine Ligase - genetics ; Glutamate-Cysteine Ligase - metabolism ; Heart ; Immunology ; Male ; Messenger RNA ; Mice, Inbred C57BL ; Mice, Transgenic ; MicroRNA ; MicroRNAs - genetics ; Myocardium ; Myocytes, Cardiac - enzymology ; Neurosciences ; Original Paper ; Oxidative Stress ; Promoter Regions, Genetic ; Rats, Wistar ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA Interference ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxide Dismutase-1 ; Three prime untranslated regions ; Transgenic animals</subject><ispartof>Cell stress &amp; chaperones, 2015-05, Vol.20 (3), p.411-420</ispartof><rights>Cell Stress Society International 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-ed875861eb4efa1839876159ebb8e5be9f2e31d8536d43e3e49aad905126d7623</citedby><cites>FETCH-LOGICAL-c562t-ed875861eb4efa1839876159ebb8e5be9f2e31d8536d43e3e49aad905126d7623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24671582$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24671582$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,41488,42557,51319,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25583113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ren, Hequn</creatorcontrib><creatorcontrib>Cai, Qingxin</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Liang, Haihai</creatorcontrib><creatorcontrib>Shan, Hongli</creatorcontrib><creatorcontrib>Fu, Zidong Donna</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Lv, Yanjie</creatorcontrib><creatorcontrib>Yang, Baofeng</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><title>MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network</title><title>Cell stress &amp; chaperones</title><addtitle>Cell Stress and Chaperones</addtitle><addtitle>Cell Stress Chaperones</addtitle><description>Oxidative stress plays an important role in cardiovascular diseases. Studies have shown that miR-1 plays an important role in the regulation of cardiomyocyte apoptosis, which can be the result of oxidative stress. This study was designed to determine whether increased miR-1 levels lead to alterations in the expression of proteins related to oxidative stress, which could contribute to heart dysfunction. We compared cardiac function in wild-type (WT) and miR-1 transgene (miR-1/Tg) C57BL/6 mice (n≥10/group). Echocardiography showed that stroke volume (SV), ejection fraction (EF), and fractional shortening (FS) were significantly decreased in miR-1/Tg mice. Concomitantly, the level of reactive oxygen species (ROS) was elevated in the cardiomyocytes from the miR-1/Tg mice, and activities of lactate dehydrogenase (LDH) and creatinine kinase (CK) in plasma were also increased in the miR-1/Tg mice. All of these changes could be reversed by LNA-anti-miR-1. In the cardiomyocytes of neonatal Wistar rats, overexpression of miR-1 exhibits higher ROS levels and lower resistance to H2O2-induced oxidative stress. We demonstrated that SOD1, Gclc, and G6PD are novel targets of miR-1 for post-transcriptional repression. MicroRNA-1 post-transcriptionally represses the expression of SOD1, Gclc, and G6PD, which is likely to contribute to the increased ROS level and the susceptibility to oxidative stress of the hearts of miR-1 transgenic mice.</description><subject>Animals</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>Enzyme Repression</subject><subject>Enzymes</subject><subject>Glucosephosphate Dehydrogenase - genetics</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>Glutamate-Cysteine Ligase - genetics</subject><subject>Glutamate-Cysteine Ligase - metabolism</subject><subject>Heart</subject><subject>Immunology</subject><subject>Male</subject><subject>Messenger RNA</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Oxidative Stress</subject><subject>Promoter Regions, Genetic</subject><subject>Rats, Wistar</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA Interference</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxide Dismutase-1</subject><subject>Three prime untranslated regions</subject><subject>Transgenic animals</subject><issn>1355-8145</issn><issn>1466-1268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctuFDEQHCEQCYEP4ACylAsXg9uv8VyQooiXFEBCcLY8Mz0bL7v2YnsX8vd4mBACB052q6uqq7ua5jGw58BY-yIDh45TBpIypRXt7jTHILWmwLW5W_9CKWpAqqPmQc5rVjltC_ebI66UEQDiuAnv_ZDipw9nFIhbrZI7uIKZDC6N3g0k_vCjK_6AJJeEOZP-iuxiLrQkF_KQ_K74GNyGbOPoJz-4uSRxIuUSiQu1mgVCIQHL95i-PmzuTW6T8dH1e9J8ef3q8_lbevHxzbvzsws6KM0LxdG0ymjAXuLkwIjOtBpUh31vUPXYTRwFjEYJPUqBAmXn3NgxVRcfW83FSfNy0d3t-y2OA4ZqeGN3yW9durLReft3J_hLu4oHKyXTnWBV4Nm1QIrf9piL3fo84GbjAsZ9tqCrwVaadp51-g90HfepHuUXSnbADJ9RsKDquXNOON2YAWbnNO2Spq1p2jlN21XO09tb3DB-x1cBfAHk2gorTLdG_0f1yUJa5xLTH1GpW1CGi5_ab7Zg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Wang, Lu</creator><creator>Yuan, Ye</creator><creator>Li, Jing</creator><creator>Ren, Hequn</creator><creator>Cai, Qingxin</creator><creator>Chen, Xu</creator><creator>Liang, Haihai</creator><creator>Shan, Hongli</creator><creator>Fu, Zidong Donna</creator><creator>Gao, Xu</creator><creator>Lv, Yanjie</creator><creator>Yang, Baofeng</creator><creator>Zhang, Yan</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network</title><author>Wang, Lu ; Yuan, Ye ; Li, Jing ; Ren, Hequn ; Cai, Qingxin ; Chen, Xu ; Liang, Haihai ; Shan, Hongli ; Fu, Zidong Donna ; Gao, Xu ; Lv, Yanjie ; Yang, Baofeng ; Zhang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-ed875861eb4efa1839876159ebb8e5be9f2e31d8536d43e3e49aad905126d7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>Enzyme Repression</topic><topic>Enzymes</topic><topic>Glucosephosphate Dehydrogenase - genetics</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>Glutamate-Cysteine Ligase - genetics</topic><topic>Glutamate-Cysteine Ligase - metabolism</topic><topic>Heart</topic><topic>Immunology</topic><topic>Male</topic><topic>Messenger RNA</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Oxidative Stress</topic><topic>Promoter Regions, Genetic</topic><topic>Rats, Wistar</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA Interference</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxide Dismutase-1</topic><topic>Three prime untranslated regions</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ren, Hequn</creatorcontrib><creatorcontrib>Cai, Qingxin</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Liang, Haihai</creatorcontrib><creatorcontrib>Shan, Hongli</creatorcontrib><creatorcontrib>Fu, Zidong Donna</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Lv, Yanjie</creatorcontrib><creatorcontrib>Yang, Baofeng</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stress &amp; chaperones</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lu</au><au>Yuan, Ye</au><au>Li, Jing</au><au>Ren, Hequn</au><au>Cai, Qingxin</au><au>Chen, Xu</au><au>Liang, Haihai</au><au>Shan, Hongli</au><au>Fu, Zidong Donna</au><au>Gao, Xu</au><au>Lv, Yanjie</au><au>Yang, Baofeng</au><au>Zhang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network</atitle><jtitle>Cell stress &amp; chaperones</jtitle><stitle>Cell Stress and Chaperones</stitle><addtitle>Cell Stress Chaperones</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>20</volume><issue>3</issue><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>1355-8145</issn><eissn>1466-1268</eissn><abstract>Oxidative stress plays an important role in cardiovascular diseases. Studies have shown that miR-1 plays an important role in the regulation of cardiomyocyte apoptosis, which can be the result of oxidative stress. This study was designed to determine whether increased miR-1 levels lead to alterations in the expression of proteins related to oxidative stress, which could contribute to heart dysfunction. We compared cardiac function in wild-type (WT) and miR-1 transgene (miR-1/Tg) C57BL/6 mice (n≥10/group). Echocardiography showed that stroke volume (SV), ejection fraction (EF), and fractional shortening (FS) were significantly decreased in miR-1/Tg mice. Concomitantly, the level of reactive oxygen species (ROS) was elevated in the cardiomyocytes from the miR-1/Tg mice, and activities of lactate dehydrogenase (LDH) and creatinine kinase (CK) in plasma were also increased in the miR-1/Tg mice. All of these changes could be reversed by LNA-anti-miR-1. In the cardiomyocytes of neonatal Wistar rats, overexpression of miR-1 exhibits higher ROS levels and lower resistance to H2O2-induced oxidative stress. We demonstrated that SOD1, Gclc, and G6PD are novel targets of miR-1 for post-transcriptional repression. MicroRNA-1 post-transcriptionally represses the expression of SOD1, Gclc, and G6PD, which is likely to contribute to the increased ROS level and the susceptibility to oxidative stress of the hearts of miR-1 transgenic mice.</abstract><cop>Dordrecht</cop><pub>Springer</pub><pmid>25583113</pmid><doi>10.1007/s12192-014-0565-9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-8145
ispartof Cell stress & chaperones, 2015-05, Vol.20 (3), p.411-420
issn 1355-8145
1466-1268
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4406930
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Animals
Antioxidants - metabolism
Apoptosis
Base Sequence
Binding Sites
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell Biology
Cells, Cultured
Enzyme Repression
Enzymes
Glucosephosphate Dehydrogenase - genetics
Glucosephosphate Dehydrogenase - metabolism
Glutamate-Cysteine Ligase - genetics
Glutamate-Cysteine Ligase - metabolism
Heart
Immunology
Male
Messenger RNA
Mice, Inbred C57BL
Mice, Transgenic
MicroRNA
MicroRNAs - genetics
Myocardium
Myocytes, Cardiac - enzymology
Neurosciences
Original Paper
Oxidative Stress
Promoter Regions, Genetic
Rats, Wistar
Reactive oxygen species
Reactive Oxygen Species - metabolism
RNA Interference
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Superoxide Dismutase-1
Three prime untranslated regions
Transgenic animals
title MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-1%20aggravates%20cardiac%20oxidative%20stress%20by%20post-transcriptional%20modification%20of%20the%20antioxidant%20network&rft.jtitle=Cell%20stress%20&%20chaperones&rft.au=Wang,%20Lu&rft.date=2015-05-01&rft.volume=20&rft.issue=3&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=1355-8145&rft.eissn=1466-1268&rft_id=info:doi/10.1007/s12192-014-0565-9&rft_dat=%3Cjstor_pubme%3E24671582%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674910822&rft_id=info:pmid/25583113&rft_jstor_id=24671582&rfr_iscdi=true