CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations
Summary Rationale Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations. Objectives We hypothesized th...
Gespeichert in:
Veröffentlicht in: | Clinical and experimental allergy 2014-07, Vol.44 (7), p.930-939 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 939 |
---|---|
container_issue | 7 |
container_start_page | 930 |
container_title | Clinical and experimental allergy |
container_volume | 44 |
creator | Rohde, G. Message, S. D. Haas, J. J. Kebadze, T. Parker, H. Laza-Stanca, V. Khaitov, M. R. Kon, O. M. Stanciu, L. A. Mallia, P. Edwards, M. R. Johnston, S. L. |
description | Summary
Rationale
Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations.
Objectives
We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma.
Methods
Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection.
Results
BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels.
Conclusions
We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations. |
doi_str_mv | 10.1111/cea.12313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3345515411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</originalsourceid><addsrcrecordid>eNqNkVFrFDEQx4Mo9lp98AvIgi_6sG2y2Ww2L0JZ6imUU1Cxb2EumfXS7ma3yW5tv33TXnuoIDgQJmR-82cyf0JeMXrIUhwZhENWcMafkAXjlciLFE_JgipR5rJW5R7Zj_GcUsqFqp-TvaKsJK-pXBBozprMbLAfLpzHmIG36UyudyYMawddNuI4OZtKzmdh4_xw5cIcc-ftbNBmeD1icD36KbEQp00P6Q0MhjVMbvDxBXnWQhfx5UM-IN8_nHxrPuann5efmuPT3Iia8twyaa2tVWs4bam0a1khKFR1LaAqilKWCoAiWAQpsYZKtJzTSiGAubvxA_J-qzvO6x6tSRMF6PSYhoNwowdw-s-Kdxv9c7jSZUm5EnUSePsgEIbLGeOkexcNdh14HOaomSi5UpKV7D9QriRVKSX0zV_o-TAHnzZxTxWFqIRI1LstlbYeY8B2Nzej-s5jnTzW9x4n9vXvH92Rj6Ym4GgL_HId3vxbSTcnx4-S-bbDxQmvdx0QLnTSlEL_WC31l6-r1VKerbTgtzQQwZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539225655</pqid></control><display><type>article</type><title>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Rohde, G. ; Message, S. D. ; Haas, J. J. ; Kebadze, T. ; Parker, H. ; Laza-Stanca, V. ; Khaitov, M. R. ; Kon, O. M. ; Stanciu, L. A. ; Mallia, P. ; Edwards, M. R. ; Johnston, S. L.</creator><creatorcontrib>Rohde, G. ; Message, S. D. ; Haas, J. J. ; Kebadze, T. ; Parker, H. ; Laza-Stanca, V. ; Khaitov, M. R. ; Kon, O. M. ; Stanciu, L. A. ; Mallia, P. ; Edwards, M. R. ; Johnston, S. L.</creatorcontrib><description>Summary
Rationale
Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations.
Objectives
We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma.
Methods
Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection.
Results
BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels.
Conclusions
We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations.</description><identifier>ISSN: 0954-7894</identifier><identifier>EISSN: 1365-2222</identifier><identifier>DOI: 10.1111/cea.12313</identifier><identifier>PMID: 24673807</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adolescent ; Adult ; airway epithelium ; Antimicrobial Cationic Peptides - metabolism ; Asthma - diagnosis ; Asthma - etiology ; Asthma - metabolism ; Asthma - physiopathology ; Bronchoalveolar Lavage Fluid - chemistry ; Bronchoalveolar Lavage Fluid - cytology ; Bronchoalveolar Lavage Fluid - immunology ; Bronchoalveolar Lavage Fluid - virology ; Case-Control Studies ; Chemokines, CXC - metabolism ; Chemotaxis, Leukocyte - immunology ; Disease Progression ; Elafin - metabolism ; Female ; Humans ; infection control ; innate immunity ; Male ; neutrophil biology ; Neutrophils - immunology ; Original ; Picornaviridae Infections - complications ; Respiratory Function Tests ; respiratory infection ; Rhinovirus ; Rhinovirus - immunology ; Young Adult</subject><ispartof>Clinical and experimental allergy, 2014-07, Vol.44 (7), p.930-939</ispartof><rights>2014 The Authors. Published by John Wiley & Sons Ltd.</rights><rights>2014 John Wiley & Sons Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</citedby><cites>FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcea.12313$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcea.12313$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24673807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohde, G.</creatorcontrib><creatorcontrib>Message, S. D.</creatorcontrib><creatorcontrib>Haas, J. J.</creatorcontrib><creatorcontrib>Kebadze, T.</creatorcontrib><creatorcontrib>Parker, H.</creatorcontrib><creatorcontrib>Laza-Stanca, V.</creatorcontrib><creatorcontrib>Khaitov, M. R.</creatorcontrib><creatorcontrib>Kon, O. M.</creatorcontrib><creatorcontrib>Stanciu, L. A.</creatorcontrib><creatorcontrib>Mallia, P.</creatorcontrib><creatorcontrib>Edwards, M. R.</creatorcontrib><creatorcontrib>Johnston, S. L.</creatorcontrib><title>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</title><title>Clinical and experimental allergy</title><addtitle>Clin Exp Allergy</addtitle><description>Summary
Rationale
Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations.
Objectives
We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma.
Methods
Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection.
Results
BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels.
Conclusions
We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations.</description><subject>Adolescent</subject><subject>Adult</subject><subject>airway epithelium</subject><subject>Antimicrobial Cationic Peptides - metabolism</subject><subject>Asthma - diagnosis</subject><subject>Asthma - etiology</subject><subject>Asthma - metabolism</subject><subject>Asthma - physiopathology</subject><subject>Bronchoalveolar Lavage Fluid - chemistry</subject><subject>Bronchoalveolar Lavage Fluid - cytology</subject><subject>Bronchoalveolar Lavage Fluid - immunology</subject><subject>Bronchoalveolar Lavage Fluid - virology</subject><subject>Case-Control Studies</subject><subject>Chemokines, CXC - metabolism</subject><subject>Chemotaxis, Leukocyte - immunology</subject><subject>Disease Progression</subject><subject>Elafin - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>infection control</subject><subject>innate immunity</subject><subject>Male</subject><subject>neutrophil biology</subject><subject>Neutrophils - immunology</subject><subject>Original</subject><subject>Picornaviridae Infections - complications</subject><subject>Respiratory Function Tests</subject><subject>respiratory infection</subject><subject>Rhinovirus</subject><subject>Rhinovirus - immunology</subject><subject>Young Adult</subject><issn>0954-7894</issn><issn>1365-2222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkVFrFDEQx4Mo9lp98AvIgi_6sG2y2Ww2L0JZ6imUU1Cxb2EumfXS7ma3yW5tv33TXnuoIDgQJmR-82cyf0JeMXrIUhwZhENWcMafkAXjlciLFE_JgipR5rJW5R7Zj_GcUsqFqp-TvaKsJK-pXBBozprMbLAfLpzHmIG36UyudyYMawddNuI4OZtKzmdh4_xw5cIcc-ftbNBmeD1icD36KbEQp00P6Q0MhjVMbvDxBXnWQhfx5UM-IN8_nHxrPuann5efmuPT3Iia8twyaa2tVWs4bam0a1khKFR1LaAqilKWCoAiWAQpsYZKtJzTSiGAubvxA_J-qzvO6x6tSRMF6PSYhoNwowdw-s-Kdxv9c7jSZUm5EnUSePsgEIbLGeOkexcNdh14HOaomSi5UpKV7D9QriRVKSX0zV_o-TAHnzZxTxWFqIRI1LstlbYeY8B2Nzej-s5jnTzW9x4n9vXvH92Rj6Ym4GgL_HId3vxbSTcnx4-S-bbDxQmvdx0QLnTSlEL_WC31l6-r1VKerbTgtzQQwZg</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Rohde, G.</creator><creator>Message, S. D.</creator><creator>Haas, J. J.</creator><creator>Kebadze, T.</creator><creator>Parker, H.</creator><creator>Laza-Stanca, V.</creator><creator>Khaitov, M. R.</creator><creator>Kon, O. M.</creator><creator>Stanciu, L. A.</creator><creator>Mallia, P.</creator><creator>Edwards, M. R.</creator><creator>Johnston, S. L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201407</creationdate><title>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</title><author>Rohde, G. ; Message, S. D. ; Haas, J. J. ; Kebadze, T. ; Parker, H. ; Laza-Stanca, V. ; Khaitov, M. R. ; Kon, O. M. ; Stanciu, L. A. ; Mallia, P. ; Edwards, M. R. ; Johnston, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>airway epithelium</topic><topic>Antimicrobial Cationic Peptides - metabolism</topic><topic>Asthma - diagnosis</topic><topic>Asthma - etiology</topic><topic>Asthma - metabolism</topic><topic>Asthma - physiopathology</topic><topic>Bronchoalveolar Lavage Fluid - chemistry</topic><topic>Bronchoalveolar Lavage Fluid - cytology</topic><topic>Bronchoalveolar Lavage Fluid - immunology</topic><topic>Bronchoalveolar Lavage Fluid - virology</topic><topic>Case-Control Studies</topic><topic>Chemokines, CXC - metabolism</topic><topic>Chemotaxis, Leukocyte - immunology</topic><topic>Disease Progression</topic><topic>Elafin - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>infection control</topic><topic>innate immunity</topic><topic>Male</topic><topic>neutrophil biology</topic><topic>Neutrophils - immunology</topic><topic>Original</topic><topic>Picornaviridae Infections - complications</topic><topic>Respiratory Function Tests</topic><topic>respiratory infection</topic><topic>Rhinovirus</topic><topic>Rhinovirus - immunology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohde, G.</creatorcontrib><creatorcontrib>Message, S. D.</creatorcontrib><creatorcontrib>Haas, J. J.</creatorcontrib><creatorcontrib>Kebadze, T.</creatorcontrib><creatorcontrib>Parker, H.</creatorcontrib><creatorcontrib>Laza-Stanca, V.</creatorcontrib><creatorcontrib>Khaitov, M. R.</creatorcontrib><creatorcontrib>Kon, O. M.</creatorcontrib><creatorcontrib>Stanciu, L. A.</creatorcontrib><creatorcontrib>Mallia, P.</creatorcontrib><creatorcontrib>Edwards, M. R.</creatorcontrib><creatorcontrib>Johnston, S. L.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and experimental allergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohde, G.</au><au>Message, S. D.</au><au>Haas, J. J.</au><au>Kebadze, T.</au><au>Parker, H.</au><au>Laza-Stanca, V.</au><au>Khaitov, M. R.</au><au>Kon, O. M.</au><au>Stanciu, L. A.</au><au>Mallia, P.</au><au>Edwards, M. R.</au><au>Johnston, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</atitle><jtitle>Clinical and experimental allergy</jtitle><addtitle>Clin Exp Allergy</addtitle><date>2014-07</date><risdate>2014</risdate><volume>44</volume><issue>7</issue><spage>930</spage><epage>939</epage><pages>930-939</pages><issn>0954-7894</issn><eissn>1365-2222</eissn><abstract>Summary
Rationale
Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations.
Objectives
We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma.
Methods
Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection.
Results
BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels.
Conclusions
We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24673807</pmid><doi>10.1111/cea.12313</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-7894 |
ispartof | Clinical and experimental allergy, 2014-07, Vol.44 (7), p.930-939 |
issn | 0954-7894 1365-2222 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403958 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adolescent Adult airway epithelium Antimicrobial Cationic Peptides - metabolism Asthma - diagnosis Asthma - etiology Asthma - metabolism Asthma - physiopathology Bronchoalveolar Lavage Fluid - chemistry Bronchoalveolar Lavage Fluid - cytology Bronchoalveolar Lavage Fluid - immunology Bronchoalveolar Lavage Fluid - virology Case-Control Studies Chemokines, CXC - metabolism Chemotaxis, Leukocyte - immunology Disease Progression Elafin - metabolism Female Humans infection control innate immunity Male neutrophil biology Neutrophils - immunology Original Picornaviridae Infections - complications Respiratory Function Tests respiratory infection Rhinovirus Rhinovirus - immunology Young Adult |
title | CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXC%20chemokines%20and%20antimicrobial%20peptides%20in%20rhinovirus-induced%20experimental%20asthma%20exacerbations&rft.jtitle=Clinical%20and%20experimental%20allergy&rft.au=Rohde,%20G.&rft.date=2014-07&rft.volume=44&rft.issue=7&rft.spage=930&rft.epage=939&rft.pages=930-939&rft.issn=0954-7894&rft.eissn=1365-2222&rft_id=info:doi/10.1111/cea.12313&rft_dat=%3Cproquest_pubme%3E3345515411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539225655&rft_id=info:pmid/24673807&rfr_iscdi=true |