CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations

Summary Rationale Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations. Objectives We hypothesized th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental allergy 2014-07, Vol.44 (7), p.930-939
Hauptverfasser: Rohde, G., Message, S. D., Haas, J. J., Kebadze, T., Parker, H., Laza-Stanca, V., Khaitov, M. R., Kon, O. M., Stanciu, L. A., Mallia, P., Edwards, M. R., Johnston, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 939
container_issue 7
container_start_page 930
container_title Clinical and experimental allergy
container_volume 44
creator Rohde, G.
Message, S. D.
Haas, J. J.
Kebadze, T.
Parker, H.
Laza-Stanca, V.
Khaitov, M. R.
Kon, O. M.
Stanciu, L. A.
Mallia, P.
Edwards, M. R.
Johnston, S. L.
description Summary Rationale Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations. Objectives We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma. Methods Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection. Results BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels. Conclusions We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations.
doi_str_mv 10.1111/cea.12313
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3345515411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</originalsourceid><addsrcrecordid>eNqNkVFrFDEQx4Mo9lp98AvIgi_6sG2y2Ww2L0JZ6imUU1Cxb2EumfXS7ma3yW5tv33TXnuoIDgQJmR-82cyf0JeMXrIUhwZhENWcMafkAXjlciLFE_JgipR5rJW5R7Zj_GcUsqFqp-TvaKsJK-pXBBozprMbLAfLpzHmIG36UyudyYMawddNuI4OZtKzmdh4_xw5cIcc-ftbNBmeD1icD36KbEQp00P6Q0MhjVMbvDxBXnWQhfx5UM-IN8_nHxrPuann5efmuPT3Iia8twyaa2tVWs4bam0a1khKFR1LaAqilKWCoAiWAQpsYZKtJzTSiGAubvxA_J-qzvO6x6tSRMF6PSYhoNwowdw-s-Kdxv9c7jSZUm5EnUSePsgEIbLGeOkexcNdh14HOaomSi5UpKV7D9QriRVKSX0zV_o-TAHnzZxTxWFqIRI1LstlbYeY8B2Nzej-s5jnTzW9x4n9vXvH92Rj6Ym4GgL_HId3vxbSTcnx4-S-bbDxQmvdx0QLnTSlEL_WC31l6-r1VKerbTgtzQQwZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539225655</pqid></control><display><type>article</type><title>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Rohde, G. ; Message, S. D. ; Haas, J. J. ; Kebadze, T. ; Parker, H. ; Laza-Stanca, V. ; Khaitov, M. R. ; Kon, O. M. ; Stanciu, L. A. ; Mallia, P. ; Edwards, M. R. ; Johnston, S. L.</creator><creatorcontrib>Rohde, G. ; Message, S. D. ; Haas, J. J. ; Kebadze, T. ; Parker, H. ; Laza-Stanca, V. ; Khaitov, M. R. ; Kon, O. M. ; Stanciu, L. A. ; Mallia, P. ; Edwards, M. R. ; Johnston, S. L.</creatorcontrib><description>Summary Rationale Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations. Objectives We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma. Methods Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection. Results BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels. Conclusions We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations.</description><identifier>ISSN: 0954-7894</identifier><identifier>EISSN: 1365-2222</identifier><identifier>DOI: 10.1111/cea.12313</identifier><identifier>PMID: 24673807</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adolescent ; Adult ; airway epithelium ; Antimicrobial Cationic Peptides - metabolism ; Asthma - diagnosis ; Asthma - etiology ; Asthma - metabolism ; Asthma - physiopathology ; Bronchoalveolar Lavage Fluid - chemistry ; Bronchoalveolar Lavage Fluid - cytology ; Bronchoalveolar Lavage Fluid - immunology ; Bronchoalveolar Lavage Fluid - virology ; Case-Control Studies ; Chemokines, CXC - metabolism ; Chemotaxis, Leukocyte - immunology ; Disease Progression ; Elafin - metabolism ; Female ; Humans ; infection control ; innate immunity ; Male ; neutrophil biology ; Neutrophils - immunology ; Original ; Picornaviridae Infections - complications ; Respiratory Function Tests ; respiratory infection ; Rhinovirus ; Rhinovirus - immunology ; Young Adult</subject><ispartof>Clinical and experimental allergy, 2014-07, Vol.44 (7), p.930-939</ispartof><rights>2014 The Authors. Published by John Wiley &amp; Sons Ltd.</rights><rights>2014 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</citedby><cites>FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcea.12313$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcea.12313$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24673807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohde, G.</creatorcontrib><creatorcontrib>Message, S. D.</creatorcontrib><creatorcontrib>Haas, J. J.</creatorcontrib><creatorcontrib>Kebadze, T.</creatorcontrib><creatorcontrib>Parker, H.</creatorcontrib><creatorcontrib>Laza-Stanca, V.</creatorcontrib><creatorcontrib>Khaitov, M. R.</creatorcontrib><creatorcontrib>Kon, O. M.</creatorcontrib><creatorcontrib>Stanciu, L. A.</creatorcontrib><creatorcontrib>Mallia, P.</creatorcontrib><creatorcontrib>Edwards, M. R.</creatorcontrib><creatorcontrib>Johnston, S. L.</creatorcontrib><title>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</title><title>Clinical and experimental allergy</title><addtitle>Clin Exp Allergy</addtitle><description>Summary Rationale Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations. Objectives We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma. Methods Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection. Results BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels. Conclusions We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations.</description><subject>Adolescent</subject><subject>Adult</subject><subject>airway epithelium</subject><subject>Antimicrobial Cationic Peptides - metabolism</subject><subject>Asthma - diagnosis</subject><subject>Asthma - etiology</subject><subject>Asthma - metabolism</subject><subject>Asthma - physiopathology</subject><subject>Bronchoalveolar Lavage Fluid - chemistry</subject><subject>Bronchoalveolar Lavage Fluid - cytology</subject><subject>Bronchoalveolar Lavage Fluid - immunology</subject><subject>Bronchoalveolar Lavage Fluid - virology</subject><subject>Case-Control Studies</subject><subject>Chemokines, CXC - metabolism</subject><subject>Chemotaxis, Leukocyte - immunology</subject><subject>Disease Progression</subject><subject>Elafin - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>infection control</subject><subject>innate immunity</subject><subject>Male</subject><subject>neutrophil biology</subject><subject>Neutrophils - immunology</subject><subject>Original</subject><subject>Picornaviridae Infections - complications</subject><subject>Respiratory Function Tests</subject><subject>respiratory infection</subject><subject>Rhinovirus</subject><subject>Rhinovirus - immunology</subject><subject>Young Adult</subject><issn>0954-7894</issn><issn>1365-2222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkVFrFDEQx4Mo9lp98AvIgi_6sG2y2Ww2L0JZ6imUU1Cxb2EumfXS7ma3yW5tv33TXnuoIDgQJmR-82cyf0JeMXrIUhwZhENWcMafkAXjlciLFE_JgipR5rJW5R7Zj_GcUsqFqp-TvaKsJK-pXBBozprMbLAfLpzHmIG36UyudyYMawddNuI4OZtKzmdh4_xw5cIcc-ftbNBmeD1icD36KbEQp00P6Q0MhjVMbvDxBXnWQhfx5UM-IN8_nHxrPuann5efmuPT3Iia8twyaa2tVWs4bam0a1khKFR1LaAqilKWCoAiWAQpsYZKtJzTSiGAubvxA_J-qzvO6x6tSRMF6PSYhoNwowdw-s-Kdxv9c7jSZUm5EnUSePsgEIbLGeOkexcNdh14HOaomSi5UpKV7D9QriRVKSX0zV_o-TAHnzZxTxWFqIRI1LstlbYeY8B2Nzej-s5jnTzW9x4n9vXvH92Rj6Ym4GgL_HId3vxbSTcnx4-S-bbDxQmvdx0QLnTSlEL_WC31l6-r1VKerbTgtzQQwZg</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Rohde, G.</creator><creator>Message, S. D.</creator><creator>Haas, J. J.</creator><creator>Kebadze, T.</creator><creator>Parker, H.</creator><creator>Laza-Stanca, V.</creator><creator>Khaitov, M. R.</creator><creator>Kon, O. M.</creator><creator>Stanciu, L. A.</creator><creator>Mallia, P.</creator><creator>Edwards, M. R.</creator><creator>Johnston, S. L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201407</creationdate><title>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</title><author>Rohde, G. ; Message, S. D. ; Haas, J. J. ; Kebadze, T. ; Parker, H. ; Laza-Stanca, V. ; Khaitov, M. R. ; Kon, O. M. ; Stanciu, L. A. ; Mallia, P. ; Edwards, M. R. ; Johnston, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5803-d17ddd89fc30f07db76ea9e9885a6224749aa0eadea77e8a65f33069eaacf3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>airway epithelium</topic><topic>Antimicrobial Cationic Peptides - metabolism</topic><topic>Asthma - diagnosis</topic><topic>Asthma - etiology</topic><topic>Asthma - metabolism</topic><topic>Asthma - physiopathology</topic><topic>Bronchoalveolar Lavage Fluid - chemistry</topic><topic>Bronchoalveolar Lavage Fluid - cytology</topic><topic>Bronchoalveolar Lavage Fluid - immunology</topic><topic>Bronchoalveolar Lavage Fluid - virology</topic><topic>Case-Control Studies</topic><topic>Chemokines, CXC - metabolism</topic><topic>Chemotaxis, Leukocyte - immunology</topic><topic>Disease Progression</topic><topic>Elafin - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>infection control</topic><topic>innate immunity</topic><topic>Male</topic><topic>neutrophil biology</topic><topic>Neutrophils - immunology</topic><topic>Original</topic><topic>Picornaviridae Infections - complications</topic><topic>Respiratory Function Tests</topic><topic>respiratory infection</topic><topic>Rhinovirus</topic><topic>Rhinovirus - immunology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohde, G.</creatorcontrib><creatorcontrib>Message, S. D.</creatorcontrib><creatorcontrib>Haas, J. J.</creatorcontrib><creatorcontrib>Kebadze, T.</creatorcontrib><creatorcontrib>Parker, H.</creatorcontrib><creatorcontrib>Laza-Stanca, V.</creatorcontrib><creatorcontrib>Khaitov, M. R.</creatorcontrib><creatorcontrib>Kon, O. M.</creatorcontrib><creatorcontrib>Stanciu, L. A.</creatorcontrib><creatorcontrib>Mallia, P.</creatorcontrib><creatorcontrib>Edwards, M. R.</creatorcontrib><creatorcontrib>Johnston, S. L.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and experimental allergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohde, G.</au><au>Message, S. D.</au><au>Haas, J. J.</au><au>Kebadze, T.</au><au>Parker, H.</au><au>Laza-Stanca, V.</au><au>Khaitov, M. R.</au><au>Kon, O. M.</au><au>Stanciu, L. A.</au><au>Mallia, P.</au><au>Edwards, M. R.</au><au>Johnston, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations</atitle><jtitle>Clinical and experimental allergy</jtitle><addtitle>Clin Exp Allergy</addtitle><date>2014-07</date><risdate>2014</risdate><volume>44</volume><issue>7</issue><spage>930</spage><epage>939</epage><pages>930-939</pages><issn>0954-7894</issn><eissn>1365-2222</eissn><abstract>Summary Rationale Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV‐induced asthma exacerbations. Objectives We hypothesized that neutrophil‐related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV‐induced exacerbations of asthma. Methods Protein levels of antimicrobial peptides (SLPI, HNP 1–3, elafin, and LL‐37) and neutrophil chemokines (CXCL1/GRO‐α, CXCL2/GRO‐β, CXCL5/ENA‐78, CXCL6/GCP‐2, CXCL7/NAP‐2, and CXCL8/IL‐8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post‐experimental infection. Results BAL HNP 1–3 and Elafin were higher, CXCL7/NAP‐2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1–3 and CXCL8/IL‐8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1–3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1–3 or IL‐8 levels. Conclusions We propose that RV infection in asthma leads to increased release of CXCL8/IL‐8, attracting neutrophils into the airways where they release HNP 1–3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL‐8 may be useful in treatment of virus‐induced asthma exacerbations.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24673807</pmid><doi>10.1111/cea.12313</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-7894
ispartof Clinical and experimental allergy, 2014-07, Vol.44 (7), p.930-939
issn 0954-7894
1365-2222
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403958
source MEDLINE; Access via Wiley Online Library
subjects Adolescent
Adult
airway epithelium
Antimicrobial Cationic Peptides - metabolism
Asthma - diagnosis
Asthma - etiology
Asthma - metabolism
Asthma - physiopathology
Bronchoalveolar Lavage Fluid - chemistry
Bronchoalveolar Lavage Fluid - cytology
Bronchoalveolar Lavage Fluid - immunology
Bronchoalveolar Lavage Fluid - virology
Case-Control Studies
Chemokines, CXC - metabolism
Chemotaxis, Leukocyte - immunology
Disease Progression
Elafin - metabolism
Female
Humans
infection control
innate immunity
Male
neutrophil biology
Neutrophils - immunology
Original
Picornaviridae Infections - complications
Respiratory Function Tests
respiratory infection
Rhinovirus
Rhinovirus - immunology
Young Adult
title CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXC%20chemokines%20and%20antimicrobial%20peptides%20in%20rhinovirus-induced%20experimental%20asthma%20exacerbations&rft.jtitle=Clinical%20and%20experimental%20allergy&rft.au=Rohde,%20G.&rft.date=2014-07&rft.volume=44&rft.issue=7&rft.spage=930&rft.epage=939&rft.pages=930-939&rft.issn=0954-7894&rft.eissn=1365-2222&rft_id=info:doi/10.1111/cea.12313&rft_dat=%3Cproquest_pubme%3E3345515411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539225655&rft_id=info:pmid/24673807&rfr_iscdi=true