Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules
The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-termi...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-04, Vol.6 (1), p.6655-6655, Article 6655 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6655 |
---|---|
container_issue | 1 |
container_start_page | 6655 |
container_title | Nature communications |
container_volume | 6 |
creator | Röhl, Alina Wengler, Daniela Madl, Tobias Lagleder, Stephan Tippel, Franziska Herrmann, Monika Hendrix, Jelle Richter, Klaus Hack, Gordon Schmid, Andreas B. Kessler, Horst Lamb, Don C. Buchner, Johannes |
description | The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation
in vivo
. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover.
The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl
et al.
show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90. |
doi_str_mv | 10.1038/ncomms7655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3647761381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</originalsourceid><addsrcrecordid>eNplkctKxDAUhoMoKurGB5CAG1FGTy6dNhtBBm8guFC3hkx6OlNpkzFpFd_ejONl1GxyOR9f_sMhZJfBMQNRnDjr2zbmwyxbIZscJBuwnIvVpfMG2YnxCdISihVSrpMNnhUZ40xukserOFNAA076xnQYaTdFWr4509Y2Ul_RuovUejs1MwzeIb3rakaNKz_ALhgXKwxzMIlyoGPsXhEdbX3ZNxi3yVplmog7n_sWebg4vx9dDW5uL69HZzcDm0HRDVg5BmZlbhHTfShFxivLDQ55mRcqPalKWMM5gGVKcVFxLCxmqWulhKrGYoucLryzftxiadGlaI2ehbo14U17U-vfFVdP9cS_aClBSJknwcGnIPjnHmOn2zpabBrj0PdRs2HOQUEOPKH7f9An3weX2ptTDCBTxVx4uKBs8DEGrL7DMNDzyemfySV4bzn-N_o1pwQcLYCYSm6CYenP_7p3eUKjBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671005987</pqid></control><display><type>article</type><title>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Röhl, Alina ; Wengler, Daniela ; Madl, Tobias ; Lagleder, Stephan ; Tippel, Franziska ; Herrmann, Monika ; Hendrix, Jelle ; Richter, Klaus ; Hack, Gordon ; Schmid, Andreas B. ; Kessler, Horst ; Lamb, Don C. ; Buchner, Johannes</creator><creatorcontrib>Röhl, Alina ; Wengler, Daniela ; Madl, Tobias ; Lagleder, Stephan ; Tippel, Franziska ; Herrmann, Monika ; Hendrix, Jelle ; Richter, Klaus ; Hack, Gordon ; Schmid, Andreas B. ; Kessler, Horst ; Lamb, Don C. ; Buchner, Johannes</creatorcontrib><description>The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation
in vivo
. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover.
The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl
et al.
show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7655</identifier><identifier>PMID: 25851214</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/33 ; 140/131 ; 631/45/470/1981 ; 631/45/535 ; 631/45/612/1229 ; 82/103 ; 82/80 ; 82/83 ; Binding Sites ; Escherichia coli ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; HSP70 Heat-Shock Proteins - metabolism ; HSP90 Heat-Shock Proteins - metabolism ; Humanities and Social Sciences ; In Vitro Techniques ; Magnetic Resonance Spectroscopy ; Molecular Chaperones - metabolism ; multidisciplinary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Surface Plasmon Resonance</subject><ispartof>Nature communications, 2015-04, Vol.6 (1), p.6655-6655, Article 6655</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Apr 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</citedby><cites>FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403447/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403447/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25851214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Röhl, Alina</creatorcontrib><creatorcontrib>Wengler, Daniela</creatorcontrib><creatorcontrib>Madl, Tobias</creatorcontrib><creatorcontrib>Lagleder, Stephan</creatorcontrib><creatorcontrib>Tippel, Franziska</creatorcontrib><creatorcontrib>Herrmann, Monika</creatorcontrib><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Hack, Gordon</creatorcontrib><creatorcontrib>Schmid, Andreas B.</creatorcontrib><creatorcontrib>Kessler, Horst</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><creatorcontrib>Buchner, Johannes</creatorcontrib><title>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation
in vivo
. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover.
The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl
et al.
show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.</description><subject>14/33</subject><subject>140/131</subject><subject>631/45/470/1981</subject><subject>631/45/535</subject><subject>631/45/612/1229</subject><subject>82/103</subject><subject>82/80</subject><subject>82/83</subject><subject>Binding Sites</subject><subject>Escherichia coli</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>In Vitro Techniques</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Chaperones - metabolism</subject><subject>multidisciplinary</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface Plasmon Resonance</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkctKxDAUhoMoKurGB5CAG1FGTy6dNhtBBm8guFC3hkx6OlNpkzFpFd_ejONl1GxyOR9f_sMhZJfBMQNRnDjr2zbmwyxbIZscJBuwnIvVpfMG2YnxCdISihVSrpMNnhUZ40xukserOFNAA076xnQYaTdFWr4509Y2Ul_RuovUejs1MwzeIb3rakaNKz_ALhgXKwxzMIlyoGPsXhEdbX3ZNxi3yVplmog7n_sWebg4vx9dDW5uL69HZzcDm0HRDVg5BmZlbhHTfShFxivLDQ55mRcqPalKWMM5gGVKcVFxLCxmqWulhKrGYoucLryzftxiadGlaI2ehbo14U17U-vfFVdP9cS_aClBSJknwcGnIPjnHmOn2zpabBrj0PdRs2HOQUEOPKH7f9An3weX2ptTDCBTxVx4uKBs8DEGrL7DMNDzyemfySV4bzn-N_o1pwQcLYCYSm6CYenP_7p3eUKjBQ</recordid><startdate>20150408</startdate><enddate>20150408</enddate><creator>Röhl, Alina</creator><creator>Wengler, Daniela</creator><creator>Madl, Tobias</creator><creator>Lagleder, Stephan</creator><creator>Tippel, Franziska</creator><creator>Herrmann, Monika</creator><creator>Hendrix, Jelle</creator><creator>Richter, Klaus</creator><creator>Hack, Gordon</creator><creator>Schmid, Andreas B.</creator><creator>Kessler, Horst</creator><creator>Lamb, Don C.</creator><creator>Buchner, Johannes</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150408</creationdate><title>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</title><author>Röhl, Alina ; Wengler, Daniela ; Madl, Tobias ; Lagleder, Stephan ; Tippel, Franziska ; Herrmann, Monika ; Hendrix, Jelle ; Richter, Klaus ; Hack, Gordon ; Schmid, Andreas B. ; Kessler, Horst ; Lamb, Don C. ; Buchner, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/33</topic><topic>140/131</topic><topic>631/45/470/1981</topic><topic>631/45/535</topic><topic>631/45/612/1229</topic><topic>82/103</topic><topic>82/80</topic><topic>82/83</topic><topic>Binding Sites</topic><topic>Escherichia coli</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>In Vitro Techniques</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Chaperones - metabolism</topic><topic>multidisciplinary</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Röhl, Alina</creatorcontrib><creatorcontrib>Wengler, Daniela</creatorcontrib><creatorcontrib>Madl, Tobias</creatorcontrib><creatorcontrib>Lagleder, Stephan</creatorcontrib><creatorcontrib>Tippel, Franziska</creatorcontrib><creatorcontrib>Herrmann, Monika</creatorcontrib><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Hack, Gordon</creatorcontrib><creatorcontrib>Schmid, Andreas B.</creatorcontrib><creatorcontrib>Kessler, Horst</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><creatorcontrib>Buchner, Johannes</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röhl, Alina</au><au>Wengler, Daniela</au><au>Madl, Tobias</au><au>Lagleder, Stephan</au><au>Tippel, Franziska</au><au>Herrmann, Monika</au><au>Hendrix, Jelle</au><au>Richter, Klaus</au><au>Hack, Gordon</au><au>Schmid, Andreas B.</au><au>Kessler, Horst</au><au>Lamb, Don C.</au><au>Buchner, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-04-08</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6655</spage><epage>6655</epage><pages>6655-6655</pages><artnum>6655</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation
in vivo
. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover.
The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl
et al.
show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25851214</pmid><doi>10.1038/ncomms7655</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-04, Vol.6 (1), p.6655-6655, Article 6655 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403447 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | 14/33 140/131 631/45/470/1981 631/45/535 631/45/612/1229 82/103 82/80 82/83 Binding Sites Escherichia coli Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism HSP70 Heat-Shock Proteins - metabolism HSP90 Heat-Shock Proteins - metabolism Humanities and Social Sciences In Vitro Techniques Magnetic Resonance Spectroscopy Molecular Chaperones - metabolism multidisciplinary Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science Science (multidisciplinary) Surface Plasmon Resonance |
title | Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hsp90%20regulates%20the%20dynamics%20of%20its%20cochaperone%20Sti1%20and%20the%20transfer%20of%20Hsp70%20between%20modules&rft.jtitle=Nature%20communications&rft.au=R%C3%B6hl,%20Alina&rft.date=2015-04-08&rft.volume=6&rft.issue=1&rft.spage=6655&rft.epage=6655&rft.pages=6655-6655&rft.artnum=6655&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7655&rft_dat=%3Cproquest_pubme%3E3647761381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671005987&rft_id=info:pmid/25851214&rfr_iscdi=true |