Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules

The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-termi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-04, Vol.6 (1), p.6655-6655, Article 6655
Hauptverfasser: Röhl, Alina, Wengler, Daniela, Madl, Tobias, Lagleder, Stephan, Tippel, Franziska, Herrmann, Monika, Hendrix, Jelle, Richter, Klaus, Hack, Gordon, Schmid, Andreas B., Kessler, Horst, Lamb, Don C., Buchner, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6655
container_issue 1
container_start_page 6655
container_title Nature communications
container_volume 6
creator Röhl, Alina
Wengler, Daniela
Madl, Tobias
Lagleder, Stephan
Tippel, Franziska
Herrmann, Monika
Hendrix, Jelle
Richter, Klaus
Hack, Gordon
Schmid, Andreas B.
Kessler, Horst
Lamb, Don C.
Buchner, Johannes
description The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo . Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl et al. show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.
doi_str_mv 10.1038/ncomms7655
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3647761381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</originalsourceid><addsrcrecordid>eNplkctKxDAUhoMoKurGB5CAG1FGTy6dNhtBBm8guFC3hkx6OlNpkzFpFd_ejONl1GxyOR9f_sMhZJfBMQNRnDjr2zbmwyxbIZscJBuwnIvVpfMG2YnxCdISihVSrpMNnhUZ40xukserOFNAA076xnQYaTdFWr4509Y2Ul_RuovUejs1MwzeIb3rakaNKz_ALhgXKwxzMIlyoGPsXhEdbX3ZNxi3yVplmog7n_sWebg4vx9dDW5uL69HZzcDm0HRDVg5BmZlbhHTfShFxivLDQ55mRcqPalKWMM5gGVKcVFxLCxmqWulhKrGYoucLryzftxiadGlaI2ehbo14U17U-vfFVdP9cS_aClBSJknwcGnIPjnHmOn2zpabBrj0PdRs2HOQUEOPKH7f9An3weX2ptTDCBTxVx4uKBs8DEGrL7DMNDzyemfySV4bzn-N_o1pwQcLYCYSm6CYenP_7p3eUKjBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671005987</pqid></control><display><type>article</type><title>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Röhl, Alina ; Wengler, Daniela ; Madl, Tobias ; Lagleder, Stephan ; Tippel, Franziska ; Herrmann, Monika ; Hendrix, Jelle ; Richter, Klaus ; Hack, Gordon ; Schmid, Andreas B. ; Kessler, Horst ; Lamb, Don C. ; Buchner, Johannes</creator><creatorcontrib>Röhl, Alina ; Wengler, Daniela ; Madl, Tobias ; Lagleder, Stephan ; Tippel, Franziska ; Herrmann, Monika ; Hendrix, Jelle ; Richter, Klaus ; Hack, Gordon ; Schmid, Andreas B. ; Kessler, Horst ; Lamb, Don C. ; Buchner, Johannes</creatorcontrib><description>The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo . Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl et al. show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7655</identifier><identifier>PMID: 25851214</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/33 ; 140/131 ; 631/45/470/1981 ; 631/45/535 ; 631/45/612/1229 ; 82/103 ; 82/80 ; 82/83 ; Binding Sites ; Escherichia coli ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; HSP70 Heat-Shock Proteins - metabolism ; HSP90 Heat-Shock Proteins - metabolism ; Humanities and Social Sciences ; In Vitro Techniques ; Magnetic Resonance Spectroscopy ; Molecular Chaperones - metabolism ; multidisciplinary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Surface Plasmon Resonance</subject><ispartof>Nature communications, 2015-04, Vol.6 (1), p.6655-6655, Article 6655</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Apr 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</citedby><cites>FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403447/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403447/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25851214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Röhl, Alina</creatorcontrib><creatorcontrib>Wengler, Daniela</creatorcontrib><creatorcontrib>Madl, Tobias</creatorcontrib><creatorcontrib>Lagleder, Stephan</creatorcontrib><creatorcontrib>Tippel, Franziska</creatorcontrib><creatorcontrib>Herrmann, Monika</creatorcontrib><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Hack, Gordon</creatorcontrib><creatorcontrib>Schmid, Andreas B.</creatorcontrib><creatorcontrib>Kessler, Horst</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><creatorcontrib>Buchner, Johannes</creatorcontrib><title>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo . Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl et al. show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.</description><subject>14/33</subject><subject>140/131</subject><subject>631/45/470/1981</subject><subject>631/45/535</subject><subject>631/45/612/1229</subject><subject>82/103</subject><subject>82/80</subject><subject>82/83</subject><subject>Binding Sites</subject><subject>Escherichia coli</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>In Vitro Techniques</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Chaperones - metabolism</subject><subject>multidisciplinary</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface Plasmon Resonance</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkctKxDAUhoMoKurGB5CAG1FGTy6dNhtBBm8guFC3hkx6OlNpkzFpFd_ejONl1GxyOR9f_sMhZJfBMQNRnDjr2zbmwyxbIZscJBuwnIvVpfMG2YnxCdISihVSrpMNnhUZ40xukserOFNAA076xnQYaTdFWr4509Y2Ul_RuovUejs1MwzeIb3rakaNKz_ALhgXKwxzMIlyoGPsXhEdbX3ZNxi3yVplmog7n_sWebg4vx9dDW5uL69HZzcDm0HRDVg5BmZlbhHTfShFxivLDQ55mRcqPalKWMM5gGVKcVFxLCxmqWulhKrGYoucLryzftxiadGlaI2ehbo14U17U-vfFVdP9cS_aClBSJknwcGnIPjnHmOn2zpabBrj0PdRs2HOQUEOPKH7f9An3weX2ptTDCBTxVx4uKBs8DEGrL7DMNDzyemfySV4bzn-N_o1pwQcLYCYSm6CYenP_7p3eUKjBQ</recordid><startdate>20150408</startdate><enddate>20150408</enddate><creator>Röhl, Alina</creator><creator>Wengler, Daniela</creator><creator>Madl, Tobias</creator><creator>Lagleder, Stephan</creator><creator>Tippel, Franziska</creator><creator>Herrmann, Monika</creator><creator>Hendrix, Jelle</creator><creator>Richter, Klaus</creator><creator>Hack, Gordon</creator><creator>Schmid, Andreas B.</creator><creator>Kessler, Horst</creator><creator>Lamb, Don C.</creator><creator>Buchner, Johannes</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150408</creationdate><title>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</title><author>Röhl, Alina ; Wengler, Daniela ; Madl, Tobias ; Lagleder, Stephan ; Tippel, Franziska ; Herrmann, Monika ; Hendrix, Jelle ; Richter, Klaus ; Hack, Gordon ; Schmid, Andreas B. ; Kessler, Horst ; Lamb, Don C. ; Buchner, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-1db01c47cee50864352fc2ae62d7895089f3ca2200c19923f2e8ce57659939fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/33</topic><topic>140/131</topic><topic>631/45/470/1981</topic><topic>631/45/535</topic><topic>631/45/612/1229</topic><topic>82/103</topic><topic>82/80</topic><topic>82/83</topic><topic>Binding Sites</topic><topic>Escherichia coli</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>In Vitro Techniques</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Chaperones - metabolism</topic><topic>multidisciplinary</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Röhl, Alina</creatorcontrib><creatorcontrib>Wengler, Daniela</creatorcontrib><creatorcontrib>Madl, Tobias</creatorcontrib><creatorcontrib>Lagleder, Stephan</creatorcontrib><creatorcontrib>Tippel, Franziska</creatorcontrib><creatorcontrib>Herrmann, Monika</creatorcontrib><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Hack, Gordon</creatorcontrib><creatorcontrib>Schmid, Andreas B.</creatorcontrib><creatorcontrib>Kessler, Horst</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><creatorcontrib>Buchner, Johannes</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röhl, Alina</au><au>Wengler, Daniela</au><au>Madl, Tobias</au><au>Lagleder, Stephan</au><au>Tippel, Franziska</au><au>Herrmann, Monika</au><au>Hendrix, Jelle</au><au>Richter, Klaus</au><au>Hack, Gordon</au><au>Schmid, Andreas B.</au><au>Kessler, Horst</au><au>Lamb, Don C.</au><au>Buchner, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-04-08</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6655</spage><epage>6655</epage><pages>6655-6655</pages><artnum>6655</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo . Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. The chaperones Hsp70 and Hsp90 are physically linked via the cochaperone Sti1/Hop, that has two binding sites for Hsp70. Here, Röhl et al. show that binding of Hsp90 changes the conformation of Sti1/Hop and determines to which site Hsp70 binds, perhaps facilitating transfer of client proteins from Hsp70 to Hsp90.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25851214</pmid><doi>10.1038/ncomms7655</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-04, Vol.6 (1), p.6655-6655, Article 6655
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4403447
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 14/33
140/131
631/45/470/1981
631/45/535
631/45/612/1229
82/103
82/80
82/83
Binding Sites
Escherichia coli
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
HSP70 Heat-Shock Proteins - metabolism
HSP90 Heat-Shock Proteins - metabolism
Humanities and Social Sciences
In Vitro Techniques
Magnetic Resonance Spectroscopy
Molecular Chaperones - metabolism
multidisciplinary
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Science
Science (multidisciplinary)
Surface Plasmon Resonance
title Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hsp90%20regulates%20the%20dynamics%20of%20its%20cochaperone%20Sti1%20and%20the%20transfer%20of%20Hsp70%20between%20modules&rft.jtitle=Nature%20communications&rft.au=R%C3%B6hl,%20Alina&rft.date=2015-04-08&rft.volume=6&rft.issue=1&rft.spage=6655&rft.epage=6655&rft.pages=6655-6655&rft.artnum=6655&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7655&rft_dat=%3Cproquest_pubme%3E3647761381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671005987&rft_id=info:pmid/25851214&rfr_iscdi=true