Engineering alcohol tolerance in yeast

Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-10, Vol.346 (6205), p.71-75
Hauptverfasser: Lam, Felix H., Ghaderi, Adel, Fink, Gerald R., Stephanopoulos, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 6205
container_start_page 71
container_title Science (American Association for the Advancement of Science)
container_volume 346
creator Lam, Felix H.
Ghaderi, Adel
Fink, Gerald R.
Stephanopoulos, Gregory
description Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.
doi_str_mv 10.1126/science.1257859
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4401034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917743</jstor_id><sourcerecordid>24917743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-f880181b5fb6b180ca52a17b84d19677e8ee6b9b41f6c3a098089534f3407a443</originalsourceid><addsrcrecordid>eNqNkc9rVDEQx4Modq2ePQmLgnh57Ux-51KQ0qpQ8NKeQ16at5vlbVKTbKH_fVN2KejFziWH-cx3Jt8vIR8RThCpPK0-huTDCVKhtDCvyALBiMFQYK_JAoDJQYMSR-RdrRuA3jPsLTmigiotQS3I14u0iimEEtNq6Waf13letjyH4rruMqblQ3C1vSdvJjfX8OHwHpOby4vr85_D1e8fv86_Xw1eomzDpDWgxlFMoxxRg3eCOlSj5rdopFJBhyBHM3KcpGcOjAZtBOMT46Ac5-yYnO1173bjNtz6kFpxs70rcevKg80u2r87Ka7tKt9bzgGBPQl83gvk2qLt9rTg1z6nFHyzKIQShnbo22FLyX92oTa7jdWHeXYp5F21tDvFtBTs_yga4LTXS9D-Wcm0EKKjX_5BN3lXUne23yiVENxo7NTpnvIl11rC9OwDgn2K3x7it4f4-8Sn_cSmtlyeccoNKsUZewR286kY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567554981</pqid></control><display><type>article</type><title>Engineering alcohol tolerance in yeast</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Lam, Felix H. ; Ghaderi, Adel ; Fink, Gerald R. ; Stephanopoulos, Gregory</creator><creatorcontrib>Lam, Felix H. ; Ghaderi, Adel ; Fink, Gerald R. ; Stephanopoulos, Gregory ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1257859</identifier><identifier>PMID: 25278607</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>alcohol tolerance ; Alcohols ; BASIC BIOLOGICAL SCIENCES ; Cellular ; engineering ; Ethanol ; Ethyl alcohol ; evolution ; fuels ; Genetic engineering ; Laboratories ; Potassium ; Saccharomyces cerevisiae ; temperature ; Tolerances ; Toxicity ; Yeast ; yeasts</subject><ispartof>Science (American Association for the Advancement of Science), 2014-10, Vol.346 (6205), p.71-75</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-f880181b5fb6b180ca52a17b84d19677e8ee6b9b41f6c3a098089534f3407a443</citedby><cites>FETCH-LOGICAL-c616t-f880181b5fb6b180ca52a17b84d19677e8ee6b9b41f6c3a098089534f3407a443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917743$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917743$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557592$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Felix H.</creatorcontrib><creatorcontrib>Ghaderi, Adel</creatorcontrib><creatorcontrib>Fink, Gerald R.</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Engineering alcohol tolerance in yeast</title><title>Science (American Association for the Advancement of Science)</title><description>Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.</description><subject>alcohol tolerance</subject><subject>Alcohols</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cellular</subject><subject>engineering</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>evolution</subject><subject>fuels</subject><subject>Genetic engineering</subject><subject>Laboratories</subject><subject>Potassium</subject><subject>Saccharomyces cerevisiae</subject><subject>temperature</subject><subject>Tolerances</subject><subject>Toxicity</subject><subject>Yeast</subject><subject>yeasts</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9rVDEQx4Modq2ePQmLgnh57Ux-51KQ0qpQ8NKeQ16at5vlbVKTbKH_fVN2KejFziWH-cx3Jt8vIR8RThCpPK0-huTDCVKhtDCvyALBiMFQYK_JAoDJQYMSR-RdrRuA3jPsLTmigiotQS3I14u0iimEEtNq6Waf13letjyH4rruMqblQ3C1vSdvJjfX8OHwHpOby4vr85_D1e8fv86_Xw1eomzDpDWgxlFMoxxRg3eCOlSj5rdopFJBhyBHM3KcpGcOjAZtBOMT46Ac5-yYnO1173bjNtz6kFpxs70rcevKg80u2r87Ka7tKt9bzgGBPQl83gvk2qLt9rTg1z6nFHyzKIQShnbo22FLyX92oTa7jdWHeXYp5F21tDvFtBTs_yga4LTXS9D-Wcm0EKKjX_5BN3lXUne23yiVENxo7NTpnvIl11rC9OwDgn2K3x7it4f4-8Sn_cSmtlyeccoNKsUZewR286kY</recordid><startdate>20141003</startdate><enddate>20141003</enddate><creator>Lam, Felix H.</creator><creator>Ghaderi, Adel</creator><creator>Fink, Gerald R.</creator><creator>Stephanopoulos, Gregory</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20141003</creationdate><title>Engineering alcohol tolerance in yeast</title><author>Lam, Felix H. ; Ghaderi, Adel ; Fink, Gerald R. ; Stephanopoulos, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-f880181b5fb6b180ca52a17b84d19677e8ee6b9b41f6c3a098089534f3407a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alcohol tolerance</topic><topic>Alcohols</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cellular</topic><topic>engineering</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>evolution</topic><topic>fuels</topic><topic>Genetic engineering</topic><topic>Laboratories</topic><topic>Potassium</topic><topic>Saccharomyces cerevisiae</topic><topic>temperature</topic><topic>Tolerances</topic><topic>Toxicity</topic><topic>Yeast</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Felix H.</creatorcontrib><creatorcontrib>Ghaderi, Adel</creatorcontrib><creatorcontrib>Fink, Gerald R.</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Felix H.</au><au>Ghaderi, Adel</au><au>Fink, Gerald R.</au><au>Stephanopoulos, Gregory</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering alcohol tolerance in yeast</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2014-10-03</date><risdate>2014</risdate><volume>346</volume><issue>6205</issue><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><pmid>25278607</pmid><doi>10.1126/science.1257859</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-10, Vol.346 (6205), p.71-75
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4401034
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects alcohol tolerance
Alcohols
BASIC BIOLOGICAL SCIENCES
Cellular
engineering
Ethanol
Ethyl alcohol
evolution
fuels
Genetic engineering
Laboratories
Potassium
Saccharomyces cerevisiae
temperature
Tolerances
Toxicity
Yeast
yeasts
title Engineering alcohol tolerance in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20alcohol%20tolerance%20in%20yeast&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lam,%20Felix%20H.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2014-10-03&rft.volume=346&rft.issue=6205&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1257859&rft_dat=%3Cjstor_pubme%3E24917743%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567554981&rft_id=info:pmid/25278607&rft_jstor_id=24917743&rfr_iscdi=true