Poly‐S‐nitrosated human albumin enhances the antitumor and antimetastasis effect of bevacizumab, partly by inhibiting autophagy through the generation of nitric oxide

Autophagy is one of the major causes of drug resistance. For example, the angiogenesis inhibitor bevacizumab shows only transient and short‐term therapeutic effects, whereas long‐term therapeutic benefits are rarely observed, probably due to hypoxia‐induced autophagy. Nitric oxide (NO) is an importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2015-02, Vol.106 (2), p.194-200
Hauptverfasser: Ishima, Yu, Inoue, Aki, Fang, Jun, Kinoshita, Ryo, Ikeda, Mayumi, Watanabe, Hiroshi, Maeda, Hiroshi, Otagiri, Masaki, Maruyama, Toru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 2
container_start_page 194
container_title Cancer science
container_volume 106
creator Ishima, Yu
Inoue, Aki
Fang, Jun
Kinoshita, Ryo
Ikeda, Mayumi
Watanabe, Hiroshi
Maeda, Hiroshi
Otagiri, Masaki
Maruyama, Toru
description Autophagy is one of the major causes of drug resistance. For example, the angiogenesis inhibitor bevacizumab shows only transient and short‐term therapeutic effects, whereas long‐term therapeutic benefits are rarely observed, probably due to hypoxia‐induced autophagy. Nitric oxide (NO) is an important molecule with multiple functions, and it has recently been reported to function as a regulator of autophagy. Therefore, a reasonable therapeutic strategy for overcoming drug resistance by NO would involve it being directly delivered to the tumor. Here, we investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human serum albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. In colon 26 (C26) cells, SNO‐HSA significantly suppressed hypoxia‐induced autophagy by inhibiting the phosphorylation of JNK1 and the expression of its downstream molecule Beclin1. The effect of SNO‐HSA was also confirmed in vivo by combining it with Bev. In C26‐bearing mice, significant suppression of tumor growth as well as lung metastasis was achieved in the combination group compared to the SNO‐HSA or bevacizumab alone group. Similar to the in vitro experiments, the immunostaining of tumor tissues clearly showed that SNO‐HSA inhibited the autophagy of tumor cells induced by bevacizumab treatment. In addition to other known antitumor effects of SNO‐HSA, that is, the induction of apoptosis and the inhibition of multidrug efflux pumps, these data may open alternate strategies for cancer chemotherapy by taking advantage of the ability of SNO‐HSA to suppress autophagy‐mediated drug resistance and enhance the efficacy of chemotherapy. Autophagy is one of the major causes of drug resistance. We investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. As the result, the combination therapy of SNO‐HSA/bevacizumab resulted in a significant decrease in lung metastasis.
doi_str_mv 10.1111/cas.12577
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4399024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289665736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4677-ff3419acc405bdc0730b9c2637e028a8ef71c7cdbfb41f794d9995d66de234e3</originalsourceid><addsrcrecordid>eNp1kt1qFDEUgAdRbK1e-AIS8EbBbZOZTDK5KZSl_kBBob0PmczJTMpMsiaZ6njVR_A5fCyfxOxuLSoYEs4J-fg44ZyieE7wMcnrRKt4TMqa8wfFIamoWHGM2cNdzlcCV-VB8STGa4wrRgV9XByUNa05a8hh8eOTH5eft98v83E2BR9Vgg4N86QcUmM7T9YhcINyGiJKAyDlkk3z5EPOut1tgqRi3jYiMAZ0Qt6gFm6Utt-yp32DNiqkcUHtgqwbbGuTdT1Sc_KbQfVL1gY_98NO34ODoJL1bmvZlmQ18l9tB0-LR0aNEZ7dxaPi6u351fr96uLjuw_rs4uVpozzlTEVJUJpTXHddhrzCrdCl6zigMtGNWA40Vx3rWkpMVzQTghRd4x1UFYUqqPidK_dzO0EnQaXghrlJthJhUV6ZeXfL84Osvc3klZC4JJmwas7QfCfZ4hJTjZqGEflwM9RElY3lDSc44y-_Ae99nNw-XeyLBvBWM0rlqnXe0rn9sQA5r4YguV2AGQeALkbgMy--LP6e_J3xzNwsge-2BGW_5vk-uxyr_wFAPnB8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289665736</pqid></control><display><type>article</type><title>Poly‐S‐nitrosated human albumin enhances the antitumor and antimetastasis effect of bevacizumab, partly by inhibiting autophagy through the generation of nitric oxide</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Ishima, Yu ; Inoue, Aki ; Fang, Jun ; Kinoshita, Ryo ; Ikeda, Mayumi ; Watanabe, Hiroshi ; Maeda, Hiroshi ; Otagiri, Masaki ; Maruyama, Toru</creator><creatorcontrib>Ishima, Yu ; Inoue, Aki ; Fang, Jun ; Kinoshita, Ryo ; Ikeda, Mayumi ; Watanabe, Hiroshi ; Maeda, Hiroshi ; Otagiri, Masaki ; Maruyama, Toru</creatorcontrib><description>Autophagy is one of the major causes of drug resistance. For example, the angiogenesis inhibitor bevacizumab shows only transient and short‐term therapeutic effects, whereas long‐term therapeutic benefits are rarely observed, probably due to hypoxia‐induced autophagy. Nitric oxide (NO) is an important molecule with multiple functions, and it has recently been reported to function as a regulator of autophagy. Therefore, a reasonable therapeutic strategy for overcoming drug resistance by NO would involve it being directly delivered to the tumor. Here, we investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human serum albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. In colon 26 (C26) cells, SNO‐HSA significantly suppressed hypoxia‐induced autophagy by inhibiting the phosphorylation of JNK1 and the expression of its downstream molecule Beclin1. The effect of SNO‐HSA was also confirmed in vivo by combining it with Bev. In C26‐bearing mice, significant suppression of tumor growth as well as lung metastasis was achieved in the combination group compared to the SNO‐HSA or bevacizumab alone group. Similar to the in vitro experiments, the immunostaining of tumor tissues clearly showed that SNO‐HSA inhibited the autophagy of tumor cells induced by bevacizumab treatment. In addition to other known antitumor effects of SNO‐HSA, that is, the induction of apoptosis and the inhibition of multidrug efflux pumps, these data may open alternate strategies for cancer chemotherapy by taking advantage of the ability of SNO‐HSA to suppress autophagy‐mediated drug resistance and enhance the efficacy of chemotherapy. Autophagy is one of the major causes of drug resistance. We investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. As the result, the combination therapy of SNO‐HSA/bevacizumab resulted in a significant decrease in lung metastasis.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.12577</identifier><identifier>PMID: 25457681</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Albumin ; Angiogenesis ; Angiogenesis inhibitors ; Animals ; Antibodies, Monoclonal, Humanized - pharmacology ; Antineoplastic Agents - pharmacology ; Antitumor activity ; Apoptosis ; Apoptosis - drug effects ; Apoptosis Regulatory Proteins - metabolism ; Autophagy ; Autophagy - drug effects ; Beclin-1 ; Bevacizumab ; Cancer therapies ; Cell Line, Tumor ; Chemotherapy ; Clinical trials ; Colon ; Colorectal cancer ; Drug resistance ; Glycoproteins ; Human serum albumin ; Humans ; Hypoxia ; Immunotherapy ; Macromolecules ; Membrane Proteins - metabolism ; Metastases ; Metastasis ; Mice ; Mitogen-Activated Protein Kinase 8 - metabolism ; Molecular weight ; Monoclonal antibodies ; Neoplasm Metastasis - drug therapy ; Nitric oxide ; Nitric Oxide - metabolism ; Nitroso Compounds - metabolism ; Original ; Phagocytosis ; Phosphorylation ; Phosphorylation - drug effects ; Serum Albumin - metabolism ; Serum Albumin, Human ; SNO‐HSA ; Studies ; Targeted cancer therapy ; Tumor cells ; Vascular endothelial growth factor</subject><ispartof>Cancer science, 2015-02, Vol.106 (2), p.194-200</ispartof><rights>2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4677-ff3419acc405bdc0730b9c2637e028a8ef71c7cdbfb41f794d9995d66de234e3</citedby><cites>FETCH-LOGICAL-c4677-ff3419acc405bdc0730b9c2637e028a8ef71c7cdbfb41f794d9995d66de234e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399024/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399024/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25457681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishima, Yu</creatorcontrib><creatorcontrib>Inoue, Aki</creatorcontrib><creatorcontrib>Fang, Jun</creatorcontrib><creatorcontrib>Kinoshita, Ryo</creatorcontrib><creatorcontrib>Ikeda, Mayumi</creatorcontrib><creatorcontrib>Watanabe, Hiroshi</creatorcontrib><creatorcontrib>Maeda, Hiroshi</creatorcontrib><creatorcontrib>Otagiri, Masaki</creatorcontrib><creatorcontrib>Maruyama, Toru</creatorcontrib><title>Poly‐S‐nitrosated human albumin enhances the antitumor and antimetastasis effect of bevacizumab, partly by inhibiting autophagy through the generation of nitric oxide</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Autophagy is one of the major causes of drug resistance. For example, the angiogenesis inhibitor bevacizumab shows only transient and short‐term therapeutic effects, whereas long‐term therapeutic benefits are rarely observed, probably due to hypoxia‐induced autophagy. Nitric oxide (NO) is an important molecule with multiple functions, and it has recently been reported to function as a regulator of autophagy. Therefore, a reasonable therapeutic strategy for overcoming drug resistance by NO would involve it being directly delivered to the tumor. Here, we investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human serum albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. In colon 26 (C26) cells, SNO‐HSA significantly suppressed hypoxia‐induced autophagy by inhibiting the phosphorylation of JNK1 and the expression of its downstream molecule Beclin1. The effect of SNO‐HSA was also confirmed in vivo by combining it with Bev. In C26‐bearing mice, significant suppression of tumor growth as well as lung metastasis was achieved in the combination group compared to the SNO‐HSA or bevacizumab alone group. Similar to the in vitro experiments, the immunostaining of tumor tissues clearly showed that SNO‐HSA inhibited the autophagy of tumor cells induced by bevacizumab treatment. In addition to other known antitumor effects of SNO‐HSA, that is, the induction of apoptosis and the inhibition of multidrug efflux pumps, these data may open alternate strategies for cancer chemotherapy by taking advantage of the ability of SNO‐HSA to suppress autophagy‐mediated drug resistance and enhance the efficacy of chemotherapy. Autophagy is one of the major causes of drug resistance. We investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. As the result, the combination therapy of SNO‐HSA/bevacizumab resulted in a significant decrease in lung metastasis.</description><subject>Albumin</subject><subject>Angiogenesis</subject><subject>Angiogenesis inhibitors</subject><subject>Animals</subject><subject>Antibodies, Monoclonal, Humanized - pharmacology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Beclin-1</subject><subject>Bevacizumab</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Colon</subject><subject>Colorectal cancer</subject><subject>Drug resistance</subject><subject>Glycoproteins</subject><subject>Human serum albumin</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Immunotherapy</subject><subject>Macromolecules</subject><subject>Membrane Proteins - metabolism</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase 8 - metabolism</subject><subject>Molecular weight</subject><subject>Monoclonal antibodies</subject><subject>Neoplasm Metastasis - drug therapy</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitroso Compounds - metabolism</subject><subject>Original</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Serum Albumin - metabolism</subject><subject>Serum Albumin, Human</subject><subject>SNO‐HSA</subject><subject>Studies</subject><subject>Targeted cancer therapy</subject><subject>Tumor cells</subject><subject>Vascular endothelial growth factor</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kt1qFDEUgAdRbK1e-AIS8EbBbZOZTDK5KZSl_kBBob0PmczJTMpMsiaZ6njVR_A5fCyfxOxuLSoYEs4J-fg44ZyieE7wMcnrRKt4TMqa8wfFIamoWHGM2cNdzlcCV-VB8STGa4wrRgV9XByUNa05a8hh8eOTH5eft98v83E2BR9Vgg4N86QcUmM7T9YhcINyGiJKAyDlkk3z5EPOut1tgqRi3jYiMAZ0Qt6gFm6Utt-yp32DNiqkcUHtgqwbbGuTdT1Sc_KbQfVL1gY_98NO34ODoJL1bmvZlmQ18l9tB0-LR0aNEZ7dxaPi6u351fr96uLjuw_rs4uVpozzlTEVJUJpTXHddhrzCrdCl6zigMtGNWA40Vx3rWkpMVzQTghRd4x1UFYUqqPidK_dzO0EnQaXghrlJthJhUV6ZeXfL84Osvc3klZC4JJmwas7QfCfZ4hJTjZqGEflwM9RElY3lDSc44y-_Ae99nNw-XeyLBvBWM0rlqnXe0rn9sQA5r4YguV2AGQeALkbgMy--LP6e_J3xzNwsge-2BGW_5vk-uxyr_wFAPnB8g</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Ishima, Yu</creator><creator>Inoue, Aki</creator><creator>Fang, Jun</creator><creator>Kinoshita, Ryo</creator><creator>Ikeda, Mayumi</creator><creator>Watanabe, Hiroshi</creator><creator>Maeda, Hiroshi</creator><creator>Otagiri, Masaki</creator><creator>Maruyama, Toru</creator><general>John Wiley &amp; Sons, Inc</general><general>BlackWell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201502</creationdate><title>Poly‐S‐nitrosated human albumin enhances the antitumor and antimetastasis effect of bevacizumab, partly by inhibiting autophagy through the generation of nitric oxide</title><author>Ishima, Yu ; Inoue, Aki ; Fang, Jun ; Kinoshita, Ryo ; Ikeda, Mayumi ; Watanabe, Hiroshi ; Maeda, Hiroshi ; Otagiri, Masaki ; Maruyama, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4677-ff3419acc405bdc0730b9c2637e028a8ef71c7cdbfb41f794d9995d66de234e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Albumin</topic><topic>Angiogenesis</topic><topic>Angiogenesis inhibitors</topic><topic>Animals</topic><topic>Antibodies, Monoclonal, Humanized - pharmacology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Beclin-1</topic><topic>Bevacizumab</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Colon</topic><topic>Colorectal cancer</topic><topic>Drug resistance</topic><topic>Glycoproteins</topic><topic>Human serum albumin</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Immunotherapy</topic><topic>Macromolecules</topic><topic>Membrane Proteins - metabolism</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase 8 - metabolism</topic><topic>Molecular weight</topic><topic>Monoclonal antibodies</topic><topic>Neoplasm Metastasis - drug therapy</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitroso Compounds - metabolism</topic><topic>Original</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Serum Albumin - metabolism</topic><topic>Serum Albumin, Human</topic><topic>SNO‐HSA</topic><topic>Studies</topic><topic>Targeted cancer therapy</topic><topic>Tumor cells</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishima, Yu</creatorcontrib><creatorcontrib>Inoue, Aki</creatorcontrib><creatorcontrib>Fang, Jun</creatorcontrib><creatorcontrib>Kinoshita, Ryo</creatorcontrib><creatorcontrib>Ikeda, Mayumi</creatorcontrib><creatorcontrib>Watanabe, Hiroshi</creatorcontrib><creatorcontrib>Maeda, Hiroshi</creatorcontrib><creatorcontrib>Otagiri, Masaki</creatorcontrib><creatorcontrib>Maruyama, Toru</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishima, Yu</au><au>Inoue, Aki</au><au>Fang, Jun</au><au>Kinoshita, Ryo</au><au>Ikeda, Mayumi</au><au>Watanabe, Hiroshi</au><au>Maeda, Hiroshi</au><au>Otagiri, Masaki</au><au>Maruyama, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly‐S‐nitrosated human albumin enhances the antitumor and antimetastasis effect of bevacizumab, partly by inhibiting autophagy through the generation of nitric oxide</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2015-02</date><risdate>2015</risdate><volume>106</volume><issue>2</issue><spage>194</spage><epage>200</epage><pages>194-200</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Autophagy is one of the major causes of drug resistance. For example, the angiogenesis inhibitor bevacizumab shows only transient and short‐term therapeutic effects, whereas long‐term therapeutic benefits are rarely observed, probably due to hypoxia‐induced autophagy. Nitric oxide (NO) is an important molecule with multiple functions, and it has recently been reported to function as a regulator of autophagy. Therefore, a reasonable therapeutic strategy for overcoming drug resistance by NO would involve it being directly delivered to the tumor. Here, we investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human serum albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. In colon 26 (C26) cells, SNO‐HSA significantly suppressed hypoxia‐induced autophagy by inhibiting the phosphorylation of JNK1 and the expression of its downstream molecule Beclin1. The effect of SNO‐HSA was also confirmed in vivo by combining it with Bev. In C26‐bearing mice, significant suppression of tumor growth as well as lung metastasis was achieved in the combination group compared to the SNO‐HSA or bevacizumab alone group. Similar to the in vitro experiments, the immunostaining of tumor tissues clearly showed that SNO‐HSA inhibited the autophagy of tumor cells induced by bevacizumab treatment. In addition to other known antitumor effects of SNO‐HSA, that is, the induction of apoptosis and the inhibition of multidrug efflux pumps, these data may open alternate strategies for cancer chemotherapy by taking advantage of the ability of SNO‐HSA to suppress autophagy‐mediated drug resistance and enhance the efficacy of chemotherapy. Autophagy is one of the major causes of drug resistance. We investigated the inhibitory effect of NO on autophagy by using a macromolecular NO donor S‐nitrosated human albumin (SNO‐HSA) with a high degree of NO loading and tumor targeting potential. As the result, the combination therapy of SNO‐HSA/bevacizumab resulted in a significant decrease in lung metastasis.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>25457681</pmid><doi>10.1111/cas.12577</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2015-02, Vol.106 (2), p.194-200
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4399024
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central
subjects Albumin
Angiogenesis
Angiogenesis inhibitors
Animals
Antibodies, Monoclonal, Humanized - pharmacology
Antineoplastic Agents - pharmacology
Antitumor activity
Apoptosis
Apoptosis - drug effects
Apoptosis Regulatory Proteins - metabolism
Autophagy
Autophagy - drug effects
Beclin-1
Bevacizumab
Cancer therapies
Cell Line, Tumor
Chemotherapy
Clinical trials
Colon
Colorectal cancer
Drug resistance
Glycoproteins
Human serum albumin
Humans
Hypoxia
Immunotherapy
Macromolecules
Membrane Proteins - metabolism
Metastases
Metastasis
Mice
Mitogen-Activated Protein Kinase 8 - metabolism
Molecular weight
Monoclonal antibodies
Neoplasm Metastasis - drug therapy
Nitric oxide
Nitric Oxide - metabolism
Nitroso Compounds - metabolism
Original
Phagocytosis
Phosphorylation
Phosphorylation - drug effects
Serum Albumin - metabolism
Serum Albumin, Human
SNO‐HSA
Studies
Targeted cancer therapy
Tumor cells
Vascular endothelial growth factor
title Poly‐S‐nitrosated human albumin enhances the antitumor and antimetastasis effect of bevacizumab, partly by inhibiting autophagy through the generation of nitric oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly%E2%80%90S%E2%80%90nitrosated%20human%20albumin%20enhances%20the%20antitumor%20and%20antimetastasis%20effect%20of%20bevacizumab,%20partly%20by%20inhibiting%20autophagy%20through%20the%20generation%20of%20nitric%20oxide&rft.jtitle=Cancer%20science&rft.au=Ishima,%20Yu&rft.date=2015-02&rft.volume=106&rft.issue=2&rft.spage=194&rft.epage=200&rft.pages=194-200&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.12577&rft_dat=%3Cproquest_pubme%3E2289665736%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289665736&rft_id=info:pmid/25457681&rfr_iscdi=true