The mitochondrial uniporter controls fight or flight heart rate increases

Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-01, Vol.6 (1), p.6081-6081, Article 6081
Hauptverfasser: Wu, Yuejin, Rasmussen, Tyler P., Koval, Olha M, Joiner, Mei-ling A., Hall, Duane D., Chen, Biyi, Luczak, Elizabeth D., Wang, Qiongling, Rokita, Adam G., Wehrens, Xander H.T., Song, Long-Sheng, Anderson, Mark E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6081
container_issue 1
container_start_page 6081
container_title Nature communications
container_volume 6
creator Wu, Yuejin
Rasmussen, Tyler P.
Koval, Olha M
Joiner, Mei-ling A.
Hall, Duane D.
Chen, Biyi
Luczak, Elizabeth D.
Wang, Qiongling
Rokita, Adam G.
Wehrens, Xander H.T.
Song, Long-Sheng
Anderson, Mark E.
description Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate. Animals react to threats by increasing their heart rate. Wu et al . show that mitochondrial calcium uptake via a highly selective ion channel, the mitochondrial calcium uniporter, stimulates metabolism in cardiac pacemaker cells and is essential for physiological pulse acceleration but not resting heart rate.
doi_str_mv 10.1038/ncomms7081
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4398998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652413388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-85b11b471dd32362702627f592967ad21d0aab9c71066ddc21a564666d7d95d03</originalsourceid><addsrcrecordid>eNplkUtLAzEUhYMotqgbf4AMuBGlmtckmY0g4gsKbnQd0iTTSZlJajIj-O9NrY-qWSQH7se5JxwADhE8R5CIC69D1yUOBdoCYwwpmiCOyfaGHoGDlBYwH1IhQekuGOGSQYI5G4OHp8YWneuDboI30am2GLxbhtjbWOjg-xjaVNRu3vRFiEXdfqjGqtgXUfW2cF5Hq5JN-2CnVm2yB5_vHni-vXm6vp9MH-8erq-mE11C0U9EOUNoRjkyhmDCMIc4X3VZ4YpxZTAyUKlZpTmCjBmjMVIloyxrbqrSQLIHLte-y2HWWaNtzqhauYyuU_FNBuXk74l3jZyHV0lJJapKZIOTT4MYXgabetm5pG3bKm_DkCRiJaaIELFCj_-gizBEn7-XKcq4oASuEp2uKR1DStHW32EQlKuS5E9JGT7ajP-NflWSgbM1kPLIz23c2Pnf7h21KZyR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646784300</pqid></control><display><type>article</type><title>The mitochondrial uniporter controls fight or flight heart rate increases</title><source>Springer Nature OA Free Journals</source><creator>Wu, Yuejin ; Rasmussen, Tyler P. ; Koval, Olha M ; Joiner, Mei-ling A. ; Hall, Duane D. ; Chen, Biyi ; Luczak, Elizabeth D. ; Wang, Qiongling ; Rokita, Adam G. ; Wehrens, Xander H.T. ; Song, Long-Sheng ; Anderson, Mark E.</creator><creatorcontrib>Wu, Yuejin ; Rasmussen, Tyler P. ; Koval, Olha M ; Joiner, Mei-ling A. ; Hall, Duane D. ; Chen, Biyi ; Luczak, Elizabeth D. ; Wang, Qiongling ; Rokita, Adam G. ; Wehrens, Xander H.T. ; Song, Long-Sheng ; Anderson, Mark E.</creatorcontrib><description>Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate. Animals react to threats by increasing their heart rate. Wu et al . show that mitochondrial calcium uptake via a highly selective ion channel, the mitochondrial calcium uniporter, stimulates metabolism in cardiac pacemaker cells and is essential for physiological pulse acceleration but not resting heart rate.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7081</identifier><identifier>PMID: 25603276</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/109 ; 13/44 ; 13/51 ; 13/89 ; 14 ; 14/1 ; 14/19 ; 14/34 ; 14/35 ; 14/63 ; 42 ; 42/35 ; 42/41 ; 42/44 ; 59 ; 631/443/592 ; 631/80/642/333/1465 ; 631/80/86/1999 ; 64 ; 64/110 ; 64/60 ; 692/308 ; 82 ; 9/10 ; 9/74 ; 96 ; Action Potentials ; Adenosine Triphosphate - chemistry ; Animals ; Biological Clocks ; Caffeine - chemistry ; Calcium - chemistry ; Calcium - metabolism ; Calcium Channels - physiology ; Echocardiography - methods ; Electrocardiography - methods ; Female ; Genes, Dominant ; Green Fluorescent Proteins - chemistry ; Heart - physiology ; Heart Rate - physiology ; Humanities and Social Sciences ; In Vitro Techniques ; Isoproterenol - chemistry ; Male ; Mice ; Mice, Transgenic ; Microscopy, Confocal ; Mitochondria - metabolism ; multidisciplinary ; Myocytes, Cardiac - cytology ; NAD - chemistry ; Perfusion ; Phosphorylation ; Science ; Science (multidisciplinary) ; Transgenes</subject><ispartof>Nature communications, 2015-01, Vol.6 (1), p.6081-6081, Article 6081</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-85b11b471dd32362702627f592967ad21d0aab9c71066ddc21a564666d7d95d03</citedby><cites>FETCH-LOGICAL-c508t-85b11b471dd32362702627f592967ad21d0aab9c71066ddc21a564666d7d95d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms7081$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25603276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yuejin</creatorcontrib><creatorcontrib>Rasmussen, Tyler P.</creatorcontrib><creatorcontrib>Koval, Olha M</creatorcontrib><creatorcontrib>Joiner, Mei-ling A.</creatorcontrib><creatorcontrib>Hall, Duane D.</creatorcontrib><creatorcontrib>Chen, Biyi</creatorcontrib><creatorcontrib>Luczak, Elizabeth D.</creatorcontrib><creatorcontrib>Wang, Qiongling</creatorcontrib><creatorcontrib>Rokita, Adam G.</creatorcontrib><creatorcontrib>Wehrens, Xander H.T.</creatorcontrib><creatorcontrib>Song, Long-Sheng</creatorcontrib><creatorcontrib>Anderson, Mark E.</creatorcontrib><title>The mitochondrial uniporter controls fight or flight heart rate increases</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate. Animals react to threats by increasing their heart rate. Wu et al . show that mitochondrial calcium uptake via a highly selective ion channel, the mitochondrial calcium uniporter, stimulates metabolism in cardiac pacemaker cells and is essential for physiological pulse acceleration but not resting heart rate.</description><subject>13</subject><subject>13/1</subject><subject>13/109</subject><subject>13/44</subject><subject>13/51</subject><subject>13/89</subject><subject>14</subject><subject>14/1</subject><subject>14/19</subject><subject>14/34</subject><subject>14/35</subject><subject>14/63</subject><subject>42</subject><subject>42/35</subject><subject>42/41</subject><subject>42/44</subject><subject>59</subject><subject>631/443/592</subject><subject>631/80/642/333/1465</subject><subject>631/80/86/1999</subject><subject>64</subject><subject>64/110</subject><subject>64/60</subject><subject>692/308</subject><subject>82</subject><subject>9/10</subject><subject>9/74</subject><subject>96</subject><subject>Action Potentials</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Animals</subject><subject>Biological Clocks</subject><subject>Caffeine - chemistry</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - physiology</subject><subject>Echocardiography - methods</subject><subject>Electrocardiography - methods</subject><subject>Female</subject><subject>Genes, Dominant</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Heart - physiology</subject><subject>Heart Rate - physiology</subject><subject>Humanities and Social Sciences</subject><subject>In Vitro Techniques</subject><subject>Isoproterenol - chemistry</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Myocytes, Cardiac - cytology</subject><subject>NAD - chemistry</subject><subject>Perfusion</subject><subject>Phosphorylation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transgenes</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtLAzEUhYMotqgbf4AMuBGlmtckmY0g4gsKbnQd0iTTSZlJajIj-O9NrY-qWSQH7se5JxwADhE8R5CIC69D1yUOBdoCYwwpmiCOyfaGHoGDlBYwH1IhQekuGOGSQYI5G4OHp8YWneuDboI30am2GLxbhtjbWOjg-xjaVNRu3vRFiEXdfqjGqtgXUfW2cF5Hq5JN-2CnVm2yB5_vHni-vXm6vp9MH-8erq-mE11C0U9EOUNoRjkyhmDCMIc4X3VZ4YpxZTAyUKlZpTmCjBmjMVIloyxrbqrSQLIHLte-y2HWWaNtzqhauYyuU_FNBuXk74l3jZyHV0lJJapKZIOTT4MYXgabetm5pG3bKm_DkCRiJaaIELFCj_-gizBEn7-XKcq4oASuEp2uKR1DStHW32EQlKuS5E9JGT7ajP-NflWSgbM1kPLIz23c2Pnf7h21KZyR</recordid><startdate>20150120</startdate><enddate>20150120</enddate><creator>Wu, Yuejin</creator><creator>Rasmussen, Tyler P.</creator><creator>Koval, Olha M</creator><creator>Joiner, Mei-ling A.</creator><creator>Hall, Duane D.</creator><creator>Chen, Biyi</creator><creator>Luczak, Elizabeth D.</creator><creator>Wang, Qiongling</creator><creator>Rokita, Adam G.</creator><creator>Wehrens, Xander H.T.</creator><creator>Song, Long-Sheng</creator><creator>Anderson, Mark E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150120</creationdate><title>The mitochondrial uniporter controls fight or flight heart rate increases</title><author>Wu, Yuejin ; Rasmussen, Tyler P. ; Koval, Olha M ; Joiner, Mei-ling A. ; Hall, Duane D. ; Chen, Biyi ; Luczak, Elizabeth D. ; Wang, Qiongling ; Rokita, Adam G. ; Wehrens, Xander H.T. ; Song, Long-Sheng ; Anderson, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-85b11b471dd32362702627f592967ad21d0aab9c71066ddc21a564666d7d95d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13</topic><topic>13/1</topic><topic>13/109</topic><topic>13/44</topic><topic>13/51</topic><topic>13/89</topic><topic>14</topic><topic>14/1</topic><topic>14/19</topic><topic>14/34</topic><topic>14/35</topic><topic>14/63</topic><topic>42</topic><topic>42/35</topic><topic>42/41</topic><topic>42/44</topic><topic>59</topic><topic>631/443/592</topic><topic>631/80/642/333/1465</topic><topic>631/80/86/1999</topic><topic>64</topic><topic>64/110</topic><topic>64/60</topic><topic>692/308</topic><topic>82</topic><topic>9/10</topic><topic>9/74</topic><topic>96</topic><topic>Action Potentials</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Animals</topic><topic>Biological Clocks</topic><topic>Caffeine - chemistry</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - physiology</topic><topic>Echocardiography - methods</topic><topic>Electrocardiography - methods</topic><topic>Female</topic><topic>Genes, Dominant</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Heart - physiology</topic><topic>Heart Rate - physiology</topic><topic>Humanities and Social Sciences</topic><topic>In Vitro Techniques</topic><topic>Isoproterenol - chemistry</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Myocytes, Cardiac - cytology</topic><topic>NAD - chemistry</topic><topic>Perfusion</topic><topic>Phosphorylation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuejin</creatorcontrib><creatorcontrib>Rasmussen, Tyler P.</creatorcontrib><creatorcontrib>Koval, Olha M</creatorcontrib><creatorcontrib>Joiner, Mei-ling A.</creatorcontrib><creatorcontrib>Hall, Duane D.</creatorcontrib><creatorcontrib>Chen, Biyi</creatorcontrib><creatorcontrib>Luczak, Elizabeth D.</creatorcontrib><creatorcontrib>Wang, Qiongling</creatorcontrib><creatorcontrib>Rokita, Adam G.</creatorcontrib><creatorcontrib>Wehrens, Xander H.T.</creatorcontrib><creatorcontrib>Song, Long-Sheng</creatorcontrib><creatorcontrib>Anderson, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Yuejin</au><au>Rasmussen, Tyler P.</au><au>Koval, Olha M</au><au>Joiner, Mei-ling A.</au><au>Hall, Duane D.</au><au>Chen, Biyi</au><au>Luczak, Elizabeth D.</au><au>Wang, Qiongling</au><au>Rokita, Adam G.</au><au>Wehrens, Xander H.T.</au><au>Song, Long-Sheng</au><au>Anderson, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitochondrial uniporter controls fight or flight heart rate increases</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-01-20</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6081</spage><epage>6081</epage><pages>6081-6081</pages><artnum>6081</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate. Animals react to threats by increasing their heart rate. Wu et al . show that mitochondrial calcium uptake via a highly selective ion channel, the mitochondrial calcium uniporter, stimulates metabolism in cardiac pacemaker cells and is essential for physiological pulse acceleration but not resting heart rate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25603276</pmid><doi>10.1038/ncomms7081</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-01, Vol.6 (1), p.6081-6081, Article 6081
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4398998
source Springer Nature OA Free Journals
subjects 13
13/1
13/109
13/44
13/51
13/89
14
14/1
14/19
14/34
14/35
14/63
42
42/35
42/41
42/44
59
631/443/592
631/80/642/333/1465
631/80/86/1999
64
64/110
64/60
692/308
82
9/10
9/74
96
Action Potentials
Adenosine Triphosphate - chemistry
Animals
Biological Clocks
Caffeine - chemistry
Calcium - chemistry
Calcium - metabolism
Calcium Channels - physiology
Echocardiography - methods
Electrocardiography - methods
Female
Genes, Dominant
Green Fluorescent Proteins - chemistry
Heart - physiology
Heart Rate - physiology
Humanities and Social Sciences
In Vitro Techniques
Isoproterenol - chemistry
Male
Mice
Mice, Transgenic
Microscopy, Confocal
Mitochondria - metabolism
multidisciplinary
Myocytes, Cardiac - cytology
NAD - chemistry
Perfusion
Phosphorylation
Science
Science (multidisciplinary)
Transgenes
title The mitochondrial uniporter controls fight or flight heart rate increases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitochondrial%20uniporter%20controls%20fight%20or%20flight%20heart%20rate%20increases&rft.jtitle=Nature%20communications&rft.au=Wu,%20Yuejin&rft.date=2015-01-20&rft.volume=6&rft.issue=1&rft.spage=6081&rft.epage=6081&rft.pages=6081-6081&rft.artnum=6081&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7081&rft_dat=%3Cproquest_C6C%3E1652413388%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1646784300&rft_id=info:pmid/25603276&rfr_iscdi=true