Aligning Experimental and Theoretical Anisotropic B‑Factors: Water Models, Normal-Mode Analysis Methods, and Metrics
The strength of X-ray crystallography in providing the information for protein dynamics has been under appreciated. The anisotropic B-factors (ADPs) from high-resolution structures are invaluable in studying the relationship among structure, dynamics, and function. Here, starting from an in-depth ev...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2014-04, Vol.118 (15), p.4069-4079 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The strength of X-ray crystallography in providing the information for protein dynamics has been under appreciated. The anisotropic B-factors (ADPs) from high-resolution structures are invaluable in studying the relationship among structure, dynamics, and function. Here, starting from an in-depth evaluation of the metrics used for comparing the overlap between two ellipsoids, we applied normal-mode analysis (NMA) to predict the theoretical ADPs and then align them with experimental results. Adding an extra layer of explicitly treated water on protein surface significantly improved the energy minimization results and better reproduced the anisotropy of experimental ADPs. In comparing experimental and theoretical ADPs, we focused on the overlap in shape, the alignment of dominant directions, and the similarity in magnitude. The choices of water molecules, NMA methods, and the metrics for evaluating the overlap of ADPs determined final results. This study provides useful information for exploring the physical basis and the application potential of experimental ADPs. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp4124327 |